"differential privacy" Papers

90 papers found • Page 1 of 2

Adaptive Batch Size for Privately Finding Second-Order Stationary Points

Daogao Liu, Kunal Talwar

ICLR 2025posterarXiv:2410.07502
1
citations

A Generalized Binary Tree Mechanism for Private Approximation of All-Pair Shortest Distances

Zongrui Zou, Chenglin Fan, Michael Dinitz et al.

NEURIPS 2025poster
1
citations

A New Federated Learning Framework Against Gradient Inversion Attacks

Pengxin Guo, Shuang Zeng, Wenhao Chen et al.

AAAI 2025paperarXiv:2412.07187
3
citations

An Iterative Algorithm for Differentially Private $k$-PCA with Adaptive Noise

Johanna Düngler, Amartya Sanyal

NEURIPS 2025posterarXiv:2508.10879

A Private Approximation of the 2nd-Moment Matrix of Any Subsamplable Input

Bar Mahpud, Or Sheffet

NEURIPS 2025posterarXiv:2505.14251

Controlling The Spread of Epidemics on Networks with Differential Privacy

Dũng Nguyen, Aravind Srinivasan, Renata Valieva et al.

NEURIPS 2025posterarXiv:2506.00745

Data-adaptive Differentially Private Prompt Synthesis for In-Context Learning

Fengyu Gao, Ruida Zhou, Tianhao Wang et al.

ICLR 2025posterarXiv:2410.12085
5
citations

Deep Learning with Plausible Deniability

Wenxuan Bao, Shan Jin, Hadi Abdullah et al.

NEURIPS 2025poster

Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates

Andrew Lowy, Daogao Liu

NEURIPS 2025posterarXiv:2506.12994
1
citations

Differentially Private Federated Low Rank Adaptation Beyond Fixed-Matrix

Ming Wen, Jiaqi Zhu, Yuedong Xu et al.

NEURIPS 2025posterarXiv:2507.09990

Differentially Private Gomory-Hu Trees

Anders Aamand, Justin Chen, Mina Dalirrooyfard et al.

NEURIPS 2025posterarXiv:2408.01798
2
citations

Differentially private learners for heterogeneous treatment effects

Maresa Schröder, Valentyn Melnychuk, Stefan Feuerriegel

ICLR 2025posterarXiv:2503.03486
3
citations

Differentially Private Relational Learning with Entity-level Privacy Guarantees

Yinan Huang, Haoteng Yin, Eli Chien et al.

NEURIPS 2025posterarXiv:2506.08347

Differential Privacy for Euclidean Jordan Algebra with Applications to Private Symmetric Cone Programming

Zhao Song, Jianfei Xue, Lichen Zhang

NEURIPS 2025posterarXiv:2509.16915

Diffusion Federated Dataset

SEOKJU HAHN, Junghye Lee

NEURIPS 2025poster

DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction

Xinwei Zhang, Zhiqi Bu, Borja Balle et al.

ICLR 2025posterarXiv:2410.03883
5
citations

Does Training with Synthetic Data Truly Protect Privacy?

Yunpeng Zhao, Jie Zhang

ICLR 2025posterarXiv:2502.12976

Do You Really Need Public Data? Surrogate Public Data for Differential Privacy on Tabular Data

Shlomi Hod, Lucas Rosenblatt, Julia Stoyanovich

NEURIPS 2025posterarXiv:2504.14368
1
citations

Exploiting Hidden Symmetry to Improve Objective Perturbation for DP Linear Learners with a Nonsmooth L1-Norm

Du Chen, Geoffrey A. Chua

ICLR 2025poster

Hot-pluggable Federated Learning: Bridging General and Personalized FL via Dynamic Selection

Lei Shen, Zhenheng Tang, Lijun Wu et al.

ICLR 2025poster
4
citations

Instance-Optimality for Private KL Distribution Estimation

Jiayuan Ye, Vitaly Feldman, Kunal Talwar

NEURIPS 2025spotlightarXiv:2505.23620

Multi-Class Support Vector Machine with Differential Privacy

Jinseong Park, Yujin Choi, Jaewook Lee

NEURIPS 2025posterarXiv:2510.04027

Nearly-Linear Time Private Hypothesis Selection with the Optimal Approximation Factor

Maryam Aliakbarpour, Zhan Shi, Ria Stevens et al.

NEURIPS 2025posterarXiv:2506.01162

Online robust locally differentially private learning for nonparametric regression

Chenfei Gu, Qiangqiang Zhang, Ting Li et al.

NEURIPS 2025poster

On the Sample Complexity of Differentially Private Policy Optimization

Yi He, Xingyu Zhou

NEURIPS 2025posterarXiv:2510.21060

Optimal Best Arm Identification under Differential Privacy

Marc Jourdan, Achraf Azize

NEURIPS 2025posterarXiv:2510.17348

Optimal Regret of Bandits under Differential Privacy

Achraf Azize, Yulian Wu, Junya Honda et al.

NEURIPS 2025poster

Privacy-Preserving Personalized Federated Prompt Learning for Multimodal Large Language Models

Linh Tran, Wei Sun, Stacy Patterson et al.

ICLR 2025posterarXiv:2501.13904
5
citations

Private Continual Counting of Unbounded Streams

Ben Jacobsen, Kassem Fawaz

NEURIPS 2025posterarXiv:2506.15018

Private Hyperparameter Tuning with Ex-Post Guarantee

Badih Ghazi, Pritish Kamath, Alexander Knop et al.

NEURIPS 2025spotlightarXiv:2508.15183

Privately Learning from Graphs with Applications in Fine-tuning Large Language Models

Haoteng Yin, Rongzhe Wei, Eli Chien et al.

COLM 2025paperarXiv:2410.08299
1
citations

Private Mechanism Design via Quantile Estimation

Yuanyuan Yang, Tao Xiao, Bhuvesh Kumar et al.

ICLR 2025poster

Private Online Learning against an Adaptive Adversary: Realizable and Agnostic Settings

Bo Li, Wei Wang, Peng Ye

NEURIPS 2025posterarXiv:2510.00574

Private Set Union with Multiple Contributions

Travis Dick, Haim Kaplan, Alex Kulesza et al.

NEURIPS 2025spotlight

Private Training Large-scale Models with Efficient DP-SGD

Liangyu Wang, Junxiao Wang, Jie Ren et al.

NEURIPS 2025poster

PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy

Ripan Kumar Kundu, Istiak Ahmed, Khaza Anuarul Hoque

ISMAR 2025paperarXiv:2512.16851

Purifying Approximate Differential Privacy with Randomized Post-processing

Yingyu Lin, Erchi Wang, Yian Ma et al.

NEURIPS 2025spotlightarXiv:2503.21071
2
citations

Scaling up the Banded Matrix Factorization Mechanism for Large Scale Differentially Private ML

Ryan McKenna

ICLR 2025poster

Sketched Gaussian Mechanism for Private Federated Learning

Qiaobo Li, Zhijie Chen, Arindam Banerjee

NEURIPS 2025spotlightarXiv:2509.08195

Temporal Heterogeneous Graph Generation with Privacy, Utility, and Efficiency

Xinyu He, Dongqi Fu, Hanghang Tong et al.

ICLR 2025oral
8
citations

Towards hyperparameter-free optimization with differential privacy

Ruixuan Liu, Zhiqi Bu

ICLR 2025posterarXiv:2503.00703
7
citations

Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy

Bogdan Kulynych, Juan Gomez, Georgios Kaissis et al.

NEURIPS 2025posterarXiv:2507.06969
3
citations

A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization

Ashwinee Panda, Xinyu Tang, Saeed Mahloujifar et al.

ICML 2024posterarXiv:2212.04486

Auditing Private Prediction

Karan Chadha, Matthew Jagielski, Nicolas Papernot et al.

ICML 2024posterarXiv:2402.09403

Beyond the Calibration Point: Mechanism Comparison in Differential Privacy

Georgios Kaissis, Stefan Kolek, Borja de Balle Pigem et al.

ICML 2024posterarXiv:2406.08918

CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources

Sikha Pentyala, Mayana Pereira, Martine De Cock

ICML 2024posterarXiv:2402.08614

CuTS: Customizable Tabular Synthetic Data Generation

Mark Vero, Mislav Balunovic, Martin Vechev

ICML 2024posterarXiv:2307.03577

Delving into Differentially Private Transformer

Youlong Ding, Xueyang Wu, Yining meng et al.

ICML 2024posterarXiv:2405.18194

Differentially Private Bias-Term Fine-tuning of Foundation Models

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha et al.

ICML 2024posterarXiv:2210.00036

Differentially Private Decentralized Learning with Random Walks

Edwige Cyffers, Aurélien Bellet, Jalaj Upadhyay

ICML 2024posterarXiv:2402.07471
PreviousNext