Private Continual Counting of Unbounded Streams

0
Citations
#1970
in NeurIPS 2025
of 5858 papers
2
Authors
4
Data Points

Abstract

We study the problem of differentially private continual counting in the unbounded setting where the input size $n$ is not known in advance. Current state-of-the-art algorithms based on optimal instantiations of the matrix mechanism cannot be directly applied here because their privacy guarantees only hold when key parameters are tuned to $n$. Using the common `doubling trick' avoids knowledge of $n$ but leads to suboptimal and non-smooth error. We solve this problem by introducing novel matrix factorizations based on logarithmic perturbations of the function $\frac{1}{\sqrt{1-z}}$ studied in prior works, which may be of independent interest. The resulting algorithm has smooth error, and for any $α> 0$ and $t\leq n$ it is able to privately estimate the sum of the first $t$ data points with $O(\log^{2+2α}(t))$ variance. It requires $O(t)$ space and amortized $O(\log t)$ time per round, compared to $O(\log(n)\log(t))$ variance, $O(n)$ space and $O(n \log n)$ pre-processing time for the nearly-optimal bounded-input algorithm of Henzinger et al. (SODA 2023). Empirically, we find that our algorithm's performance is also comparable to theirs in absolute terms: our variance is less than $1.5\times$ theirs for $t$ as large as $2^{24}$.

Citation History

Jan 25, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Jan 30, 2026
0