🧬Robustness

Uncertainty Quantification

Estimating model uncertainty

100 papers920 total citations
Compare with other topics
Feb '24 Jan '26316 papers
Also includes: uncertainty quantification, uncertainty estimation, epistemic uncertainty, aleatoric uncertainty, bayesian neural networks

Top Papers

#1

Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models

Jimeng Sun, Shubhendu Trivedi, Zhen Lin

ICLR 2025
233
citations
#2

OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models

Changhun Lee, Jungyu Jin, Taesu Kim et al.

AAAI 2024arXiv:2306.02272
weight quantizationlarge language modelsmixed-precision quantizationparameter-efficient fine-tuning+4
100
citations
#3

Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields

Leili Goli, Cody Reading, Silvia Sellán et al.

CVPR 2024
89
citations
#4

Producing and Leveraging Online Map Uncertainty in Trajectory Prediction

Xunjiang Gu, Guanyu Song, Igor Gilitschenski et al.

CVPR 2024
36
citations
#5

On the Relation between Trainability and Dequantization of Variational Quantum Learning Models

Elies Gil-Fuster, Casper Gyurik, Adrian Perez-Salinas et al.

ICLR 2025arXiv:2406.07072
variational quantum machine learningparametrized quantum circuitsquantum kernel methodstrainability+3
33
citations
#6

Revisiting the Domain Shift and Sample Uncertainty in Multi-source Active Domain Transfer

Wenqiao Zhang, Zheqi Lv

CVPR 2024
29
citations
#7

ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation

Kim-Celine Kahl, Carsten Lüth, Maximilian Zenk et al.

ICLR 2024
23
citations
#8

Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation

Konstantin Hess, Valentyn Melnychuk, Dennis Frauen et al.

ICLR 2024
22
citations
#9

From Risk to Uncertainty: Generating Predictive Uncertainty Measures via Bayesian Estimation

Nikita Kotelevskii, Vladimir Kondratyev, Martin Takáč et al.

ICLR 2025
17
citations
#10

Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models

Gianni Franchi, Olivier Laurent, Maxence Leguéry et al.

CVPR 2024
15
citations
#11

Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling

Guiyu Zhang, Huan-ang Gao, Zijian Jiang et al.

ICLR 2025
13
citations
#12

Imputation for prediction: beware of diminishing returns.

Marine Le Morvan, Gael Varoquaux

ICLR 2025arXiv:2407.19804
missing value imputationpredictive modelingmissingness indicatorsimputation accuracy+4
12
citations
#13

Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model

Leheng Zhang, Weiyi You, Kexuan Shi et al.

CVPR 2025
12
citations
#14

R-EDL: Relaxing Nonessential Settings of Evidential Deep Learning

Mengyuan Chen, Junyu Gao, Changsheng Xu

ICLR 2024
12
citations
#15

Dropout-Based Rashomon Set Exploration for Efficient Predictive Multiplicity Estimation

Hsiang Hsu, Guihong Li, Shaohan Hu et al.

ICLR 2024
11
citations
#16

Uncertainty Regularized Evidential Regression

Kai Ye, Tiejin Chen, Hua Wei et al.

AAAI 2024arXiv:2401.01484
evidential regression networkuncertainty quantificationdempster-shafer theoryactivation function constraints+2
11
citations
#17

One Step Closer to Unbiased Aleatoric Uncertainty Estimation

Wang Zhang, Ziwen Martin Ma, Subhro Das et al.

AAAI 2024arXiv:2312.10469
aleatoric uncertainty estimationepistemic uncertaintyvariance attenuationdata de-noising+2
11
citations
#18

Towards Modeling Uncertainties of Self-explaining Neural Networks via Conformal Prediction

Wei Qian, Chenxu Zhao, Yangyi Li et al.

AAAI 2024arXiv:2401.01549
self-explaining neural networksconformal predictionuncertainty quantificationinterpretable machine learning+4
10
citations
#19

Variational Inference for SDEs Driven by Fractional Noise

Rembert Daems, Manfred Opper, Guillaume Crevecoeur et al.

ICLR 2024
10
citations
#20

Towards Trustworthy Knowledge Graph Reasoning: An Uncertainty Aware Perspective

Bo Ni, Yu Wang, Lu Cheng et al.

AAAI 2025
10
citations
#21

Evidential Uncertainty-Guided Mitochondria Segmentation for 3D EM Images

Ruohua Shi, Lingyu Duan, Tiejun Huang et al.

AAAI 2024
9
citations
#22

QuaDiM: A Conditional Diffusion Model For Quantum State Property Estimation

Yehui Tang, Mabiao Long, Junchi Yan

ICLR 2025
9
citations
#23

Error-quantified Conformal Inference for Time Series

Junxi Wu, Dongjian Hu, Yajie Bao et al.

ICLR 2025arXiv:2502.00818
conformal inferenceuncertainty quantificationtime series predictionprediction sets+3
8
citations
#24

Uncertainty-aware Graph-based Hyperspectral Image Classification

Linlin Yu, Yifei Lou, Feng Chen

ICLR 2024
8
citations
#25

Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression

Xuanlong Yu, Gianni Franchi, Jindong Gu et al.

AAAI 2024arXiv:2308.09065
uncertainty quantificationauxiliary uncertainty estimatoraleatoric uncertaintyepistemic uncertainty+4
7
citations
#26

Stochastic Online Instrumental Variable Regression: Regrets for Endogeneity and Bandit Feedback

Riccardo Della Vecchia, Debabrota Basu

AAAI 2025
7
citations
#27

Error Bounds for Gaussian Process Regression Under Bounded Support Noise with Applications to Safety Certification

Robert Reed, Luca Laurenti, Morteza Lahijanian

AAAI 2025
7
citations
#28

Existence Is Chaos: Enhancing 3D Human Motion Prediction with Uncertainty Consideration

Zhihao Wang, Yulin Zhou, Ningyu Zhang et al.

AAAI 2024arXiv:2403.14104
3d human motion predictionuncertainty modelingmotion dynamicsencoder-decoder model+3
6
citations
#29

Uncertainty Quantification in Heterogeneous Treatment Effect Estimation with Gaussian-Process-Based Partially Linear Model

Shunsuke Horii, Yoichi Chikahara

AAAI 2024arXiv:2312.10435
heterogeneous treatment effectsuncertainty quantificationbayesian inferencegaussian process priors+4
6
citations
#30

Epistemic Uncertainty Quantification For Pre-Trained Neural Networks

Hanjing Wang, Qiang Ji

CVPR 2024
6
citations
#31

Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection

Kedi Chen, Qin Chen, Jie Zhou et al.

AAAI 2025
6
citations
#32

Calibrating Expressions of Certainty

Peiqi Wang, Barbara Lam, Yingcheng Liu et al.

ICLR 2025arXiv:2410.04315
certainty calibrationlinguistic expressionsuncertainty distributionspost-hoc calibration+3
5
citations
#33

Structural Estimation of Partially Observed Linear Non-Gaussian Acyclic Model: A Practical Approach with Identifiability

Songyao Jin, Feng Xie, Guangyi Chen et al.

ICLR 2024
5
citations
#34

Feature Clipping for Uncertainty Calibration

Linwei Tao, Minjing Dong, Chang Xu

AAAI 2025
5
citations
#35

Uncertainty-Aware Global-View Reconstruction for Multi-View Multi-Label Feature Selection

Pingting Hao, Kunpeng Liu, Wanfu Gao

AAAI 2025
5
citations
#36

Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction

Jeffrey Wen, Rizwan Ahmad, Phillip Schniter

ECCV 2024
5
citations
#37

Integral Imprecise Probability Metrics

Siu Lun (Alan) Chau, Michele Caprio, Krikamol Muandet

NeurIPS 2025
5
citations
#38

Uncertainty Quantification with the Empirical Neural Tangent Kernel

Joseph Wilson, Chris van der Heide, Liam Hodgkinson et al.

NeurIPS 2025arXiv:2502.02870
uncertainty quantificationneural tangent kernelbayesian methodsdeep ensembles+3
5
citations
#39

Nested Expectations with Kernel Quadrature

Zonghao Chen, Masha Naslidnyk, Francois-Xavier Briol

ICML 2025
4
citations
#40

Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation

David Heineman, Valentin Hofmann, Ian Magnusson et al.

NeurIPS 2025
4
citations
#41

Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates

Baozhen Wang, Xingye Qiao

AAAI 2025
4
citations
#42

UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model

Timo Kaiser, Thomas Norrenbrock, Bodo Rosenhahn

ICML 2025
4
citations
#43

Non-parametric Sensor Noise Modeling and Synthesis

Ali Mosleh, Luxi Zhao, Atin Vikram Singh et al.

ECCV 2024
sensor noise modelingnon-parametric modelingnoise synthesisprobability mass functions+2
4
citations
#44

Monte Carlo Tree Search in the Presence of Transition Uncertainty

Farnaz Kohankhaki, Kiarash Aghakasiri, Hongming Zhang et al.

AAAI 2024arXiv:2312.11348
monte carlo tree searchtransition uncertaintyimperfect environment modelssearch-based decision making+3
3
citations
#45

Towards Understanding and Quantifying Uncertainty for Text-to-Image Generation

Gianni Franchi, Nacim Belkhir, Dat NGUYEN et al.

CVPR 2025arXiv:2412.03178
uncertainty quantificationtext-to-image generationlarge vision-language modelsaleatoric epistemic uncertainty+4
3
citations
#46

Maximum Entropy Model Correction in Reinforcement Learning

Amin Rakhsha, Mete Kemertas, Mohammad Ghavamzadeh et al.

ICLR 2024
3
citations
#47

On the Generalization of Representation Uncertainty in Earth Observation

Spyros Kondylatos, Nikolaos Ioannis Bountos, Dimitrios Michail et al.

ICCV 2025
3
citations
#48

Uncertainty Weighted Gradients for Model Calibration

Jinxu Lin, Linwei Tao, Minjing Dong et al.

CVPR 2025arXiv:2503.22725
model calibrationuncertainty estimationloss functionsgradient weighting+4
3
citations
#49

RILQ: Rank-Insensitive LoRA-Based Quantization Error Compensation for Boosting 2-Bit Large Language Model Accuracy

Geonho Lee, Janghwan Lee, Sukjin Hong et al.

AAAI 2025
3
citations
#50

Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification

Kaizheng Wang, Fabio Cuzzolin, Keivan Shariatmadar et al.

ICLR 2025arXiv:2405.15047
uncertainty estimationbayesian neural networksdeep ensemblescredal set representation+3
3
citations
#51

Mind the Uncertainty in Human Disagreement: Evaluating Discrepancies Between Model Predictions and Human Responses in VQA

Jian Lan, Diego Frassinelli, Barbara Plank

AAAI 2025
3
citations
#52

Distribution-Free Data Uncertainty for Neural Network Regression

Domokos M. Kelen, Ádám Jung, Péter Kersch et al.

ICLR 2025
uncertainty quantificationregression analysiscontinuous ranked probability scoredistribution-free methods+4
3
citations
#53

Uncertainty Visualization via Low-Dimensional Posterior Projections

Omer Yair, Tomer Michaeli, Elias Nehme

CVPR 2024
3
citations
#54

Monte-Carlo Tree Search with Uncertainty Propagation via Optimal Transport

Tuan Dam, Pascal Stenger, Lukas Schneider et al.

ICML 2025
2
citations
#55

Towards Characterizing Domain Counterfactuals for Invertible Latent Causal Models

Zeyu Zhou, Ruqi Bai, Sean Kulinski et al.

ICLR 2024
2
citations
#56

CUQDS: Conformal Uncertainty Quantification Under Distribution Shift for Trajectory Prediction

Huiqun Huang, Sihong He, Fei Miao

AAAI 2025
2
citations
#57

Calibrated Physics-Informed Uncertainty Quantification

Vignesh Gopakumar, Ander Gray, Lorenzo Zanisi et al.

ICML 2025
2
citations
#58

CBMA: Improving Conformal Prediction through Bayesian Model Averaging

Pankaj Bhagwat, Linglong Kong, Bei Jiang

ICLR 2025
2
citations
#59

Quantifying and Narrowing the Unknown: Interactive Text-to-Video Retrieval via Uncertainty Minimization

Bingqing Zhang, Zhuo Cao, Heming Du et al.

ICCV 2025
2
citations
#60

How Much is Unseen Depends Chiefly on Information About the Seen

Seongmin Lee, Marcel Boehme

ICLR 2025
2
citations
#61

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025arXiv:2409.17267
model aggregationvariance reductionblack box integrationlinear aggregation+3
2
citations
#62

Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models

Xiao Liang, Di Wang, Zhicheng Jiao et al.

ICCV 2025
2
citations
#63

Credal Prediction based on Relative Likelihood

Timo Löhr, Paul Hofman, Felix Mohr et al.

NeurIPS 2025
2
citations
#64

Contextual Thompson Sampling via Generation of Missing Data

Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.

NeurIPS 2025
2
citations
#65

Conformal Prediction Beyond the Seen: A Missing Mass Perspective for Uncertainty Quantification in Generative Models

Sima Noorani, Shayan Kiyani, George J. Pappas et al.

NeurIPS 2025
2
citations
#66

ViLU: Learning Vision-Language Uncertainties for Failure Prediction

Marc Lafon, Yannis Karmim, Julio Silva-Rodríguez et al.

ICCV 2025
2
citations
#67

Uncertainty-Aware Self-Training for CTC-Based Automatic Speech Recognition

Eungbeom Kim, Kyogu Lee

AAAI 2025
1
citations
#68

Dynamic Uncertainty Estimation for Offline Reinforcement Learning

Jiesheng Wang, Lin Li, Wei Wei et al.

AAAI 2025
1
citations
#69

Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models

Haoyi Song, Ruihan Ji, Naichen Shi et al.

NeurIPS 2025
1
citations
#70

Learning Likelihood-Free Reference Priors

Nick Bishop, Daniel Jarne Ornia, Joel Dyer et al.

ICML 2025
1
citations
#71

Uncertainty Estimation on Graphs with Structure Informed Stochastic Partial Differential Equations

Fred Xu, Thomas Markovich

NeurIPS 2025
1
citations
#72

FLUE: Streamlined Uncertainty Estimation for Large Language Models

Shiqi Gao, Tianxiang Gong, Zijie Lin et al.

AAAI 2025
1
citations
#73

Approximate Bilevel Difference Convex Programming for Bayesian Risk Markov Decision Processes

Yifan Lin, Enlu Zhou

AAAI 2025
1
citations
#74

Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling

Jinzong Dong, Zhaohui Jiang, Dong Pan et al.

AAAI 2025
1
citations
#75

REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability

Kristoffer K. Wickstrøm, Thea Brüsch, Michael C. Kampffmeyer et al.

AAAI 2025
1
citations
#76

Quantifying Uncertainty in the Presence of Distribution Shifts

Yuli Slavutsky, David Blei

NeurIPS 2025
1
citations
#77

Hyperdimensional Uncertainty Quantification for Multimodal Uncertainty Fusion in Autonomous Vehicles Perception

Luke Chen, Junyao Wang, Trier Mortlock et al.

CVPR 2025
1
citations
#78

Regret Bounds for Episodic Risk-Sensitive Linear Quadratic Regulator

Wenhao Xu, Xuefeng Gao, Xuedong He

ICLR 2025
1
citations
#79

Uncertainty Estimation for Heterophilic Graphs Through the Lens of Information Theory

Dominik Fuchsgruber, Tom Wollschläger, Johannes Bordne et al.

ICML 2025
1
citations
#80

Inverse decision-making using neural amortized Bayesian actors

Dominik Straub, Tobias Fabian Niehues, Jan Peters et al.

ICLR 2025
1
citations
#81

Statistical Inference for Gradient Boosting Regression

Haimo Fang, Kevin Tan, Giles Hooker

NeurIPS 2025arXiv:2509.23127
gradient boosting regressionstatistical inferenceuncertainty quantificationdropout regularization+4
1
citations
#82

Optimal kernel regression bounds under energy-bounded noise

Amon Lahr, Johannes Köhler, Anna Scampicchio et al.

NeurIPS 2025
1
citations
#83

Adjusted Count Quantification Learning on Graphs

Clemens Damke, Eyke Hüllermeier

NeurIPS 2025
1
citations
#84

AcuRank: Uncertainty-Aware Adaptive Computation for Listwise Reranking

Soyoung Yoon, Gyuwan Kim, Gyu-Hwung Cho et al.

NeurIPS 2025
1
citations
#85

Leveraging Uncertainty Estimates To Improve Classifier Performance

Gundeep Arora, Srujana Merugu, Anoop Saladi et al.

ICLR 2024
1
citations
#86

Dual Energy-Based Model with Open-World Uncertainty Estimation for Out-of-distribution Detection

Qi Chen, Hu Ding

CVPR 2025
1
citations
#87

Active Measurement: Efficient Estimation at Scale

Max Hamilton, Jinlin Lai, Wenlong Zhao et al.

NeurIPS 2025
1
citations
#88

Self-Calibrating Vicinal Risk Minimisation for Model Calibration

Jiawei Liu, Changkun Ye, Ruikai Cui et al.

CVPR 2024
not collected
#89

Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture

Juanwu Lu, Can Cui, Yunsheng Ma et al.

CVPR 2024
not collected
#90

Unveiling the Uncertainty in Embodied and Operational Carbon of Large AI Models through a Probabilistic Carbon Accounting Model

Xiaoyang Zhang, He Fang, Yang Deng et al.

NeurIPS 2025
not collected
#91

Uncertainty Quantification for Physics-Informed Neural Networks with Extended Fiducial Inference

Frank Shih, Zhenghao Jiang, Faming Liang

NeurIPS 2025
not collected
#92

Uncertainty-Aware Yield Prediction with Multimodal Molecular Features

Jiayuan Chen, Kehan Guo, Zhen Liu et al.

AAAI 2024
not collected
#93

Uncertainty Quantification for Data-Driven Change-Point Learning via Cross-Validation

AAAI 2024
not collected
#94

Efficient semantic uncertainty quantification in language models via diversity-steered sampling

Ji Won Park, Kyunghyun Cho

NeurIPS 2025
not collected
#95

Torch-Uncertainty: Deep Learning Uncertainty Quantification

Adrien Lafage, Olivier Laurent, Firas Gabetni et al.

NeurIPS 2025
not collected
#96

Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution

Tailin Wu, Willie Neiswanger, Hongtao Zheng et al.

AAAI 2024
not collected
#97

Towards Reliable LLM-based Robots Planning via Combined Uncertainty Estimation

Shiyuan Yin, Chenjia Bai, Zihao Zhang et al.

NeurIPS 2025
not collected
#98

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann et al.

ECCV 2024
not collected
#99

Partially Matching Submap Helps: Uncetainty Modeling and Propagation for Text to Point Cloud Localization

Mingtao Feng, Longlong Mei, Zijie Wu et al.

ICCV 2025
not collected
#100

Probabilistic Explanations for Linear Models

Bernardo Subercaseaux, Marcelo Arenas, Kuldeep S. Meel

AAAI 2025
not collected