🧬Robustness

Out-of-Distribution Detection

Detecting samples outside training distribution

100 papers2,204 total citations
Compare with other topics
Feb '24 Jan '26498 papers
Also includes: out-of-distribution detection, ood detection, anomaly detection, distribution shift

Top Papers

#1

AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection

Qihang Zhou, Guansong Pang, Yu Tian et al.

ICLR 2024
288
citations
#2

RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection

Ximiao Zhang, Min Xu, Xiuzhuang Zhou

CVPR 2024
171
citations
#3

Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection

Chengjie Wang, wenbing zhu, Bin-Bin Gao et al.

CVPR 2024
120
citations
#4

PromptAD: Learning Prompts with only Normal Samples for Few-Shot Anomaly Detection

Xiaofan Li, Zhizhong Zhang, Xin Tan et al.

CVPR 2024
104
citations
#5

Text Prompt with Normality Guidance for Weakly Supervised Video Anomaly Detection

Zhiwei Yang, Jing Liu, Peng Wu

CVPR 2024
70
citations
#6

Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement

Kai Xu, Rongyu Chen, Gianni Franchi et al.

ICLR 2024
61
citations
#7

DQ-DETR: DETR with Dynamic Query for Tiny Object Detection

Yi-Xin Huang, Hou-I Liu, Hong-Han Shuai et al.

ECCV 2024arXiv:2404.03507
tiny object detectiondetr-like methodsdynamic query selectionobject query adjustment+4
56
citations
#8

Learning Transferable Negative Prompts for Out-of-Distribution Detection

Tianqi Li, Guansong Pang, wenjun miao et al.

CVPR 2024
43
citations
#9

ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection

Yichen Bai, Zongbo Han, Bing Cao et al.

CVPR 2024
40
citations
#10

WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series

Irina Rish, Kartik Ahuja, Mohammad Javad Darvishi Bayazi et al.

ICLR 2024
40
citations
#11

ExtDM: Distribution Extrapolation Diffusion Model for Video Prediction

Zhicheng Zhang, Junyao Hu, Wentao Cheng et al.

CVPR 2024
34
citations
#12

AA-CLIP: Enhancing Zero-Shot Anomaly Detection via Anomaly-Aware CLIP

wenxin ma, Xu Zhang, Qingsong Yao et al.

CVPR 2025
33
citations
#13

Spurious Feature Diversification Improves Out-of-distribution Generalization

LIN Yong, Lu Tan, Yifan HAO et al.

ICLR 2024
33
citations
#14

Localization Is All You Evaluate: Data Leakage in Online Mapping Datasets and How to Fix It

Adam Lilja, Junsheng Fu, Erik Stenborg et al.

CVPR 2024
30
citations
#15

NECO: NEural Collapse Based Out-of-distribution detection

Mouïn Ben Ammar, Nacim Belkhir, Sebastian Popescu et al.

ICLR 2024
30
citations
#16

GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features

Luc Sträter, Mohammadreza Salehi, Efstratios Gavves et al.

ECCV 2024arXiv:2407.12427
anomaly detectionvision transformersself-supervised learningcross-domain generalization+4
27
citations
#17

Out-of-Distribution Detection in Long-Tailed Recognition with Calibrated Outlier Class Learning

Wenjun Miao, Guansong Pang, Xiao Bai et al.

AAAI 2024arXiv:2312.10686
out-of-distribution detectionlong-tailed recognitioncalibrated outlier class learningdebiased large margin learning+3
25
citations
#18

Supervised Anomaly Detection for Complex Industrial Images

Aimira Baitieva, David Hurych, Victor Besnier et al.

CVPR 2024
24
citations
#19

Exploring Unbiased Deepfake Detection via Token-Level Shuffling and Mixing

Xinghe Fu, Zhiyuan Yan, Taiping Yao et al.

AAAI 2025
24
citations
#20

Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection

Zhen Qu, Xian Tao, Xinyi Gong et al.

CVPR 2025
22
citations
#21

Reliability in Semantic Segmentation: Can We Use Synthetic Data?

Thibaut Loiseau, Tuan Hung Vu, Mickael Chen et al.

ECCV 2024
22
citations
#22

Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation

Guan Gui, Bin-Bin Gao, Jun Liu et al.

ECCV 2024
21
citations
#23

Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders

Qichao Shentu, Beibu Li, Kai Zhao et al.

ICLR 2025arXiv:2405.15273
time series anomaly detectionadaptive bottlenecksadversarial decodersmulti-domain pre-training+2
21
citations
#24

Long-Tailed Anomaly Detection with Learnable Class Names

Chih-Hui Ho, Kuan-Chuan Peng, Nuno Vasconcelos

CVPR 2024
20
citations
#25

Generating and Reweighting Dense Contrastive Patterns for Unsupervised Anomaly Detection

Songmin Dai, Yifan Wu, Xiaoqiang Li et al.

AAAI 2024arXiv:2312.15911
unsupervised anomaly detectiondiffusion modelscontrastive pattern generationanomaly generation paradigm+4
20
citations
#26

LogicAD: Explainable Anomaly Detection via VLM-based Text Feature Extraction

Er Jin, Qihui Feng, Yongli Mou et al.

AAAI 2025
20
citations
#27

On the Variance of Neural Network Training with respect to Test Sets and Distributions

Keller Jordan

ICLR 2024
20
citations
#28

How to Overcome Curse-of-Dimensionality for Out-of-Distribution Detection?

Soumya Suvra Ghosal, Yiyou Sun, Yixuan Li

AAAI 2024arXiv:2312.14452
out-of-distribution detectiondistance-based methodscurse-of-dimensionalitysubspace learning+2
20
citations
#29

GOODAT: Towards Test-Time Graph Out-of-Distribution Detection

Luzhi Wang, Di Jin, He Zhang et al.

AAAI 2024arXiv:2401.06176
graph out-of-distribution detectiontest-time adaptationgraph neural networksunsupervised learning+4
20
citations
#30

Deep Orthogonal Hypersphere Compression for Anomaly Detection

Yunhe Zhang, Yan Sun, Jinyu Cai et al.

ICLR 2024
19
citations
#31

Discriminability-Driven Channel Selection for Out-of-Distribution Detection

Yue Yuan, Rundong He, Yicong Dong et al.

CVPR 2024
19
citations
#32

Dense Projection for Anomaly Detection

Dazhi Fu, Zhao Zhang, Jicong Fan

AAAI 2024
18
citations
#33

A Label-free Heterophily-guided Approach for Unsupervised Graph Fraud Detection

Junjun Pan, Yixin Liu, Xin Zheng et al.

AAAI 2025
18
citations
#34

Exploring Diverse Representations for Open Set Recognition

Yu Wang, Junxian Mu, Pengfei Zhu et al.

AAAI 2024arXiv:2401.06521
open set recognitionattention diversity regularizationmulti-expert fusiondiscriminative models+4
18
citations
#35

Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy

Joonhyun Jeong, Seyun Bae, Yeonsung Jung et al.

CVPR 2025
18
citations
#36

Temporally and Distributionally Robust Optimization for Cold-Start Recommendation

Xinyu Lin, Wenjie Wang, Jujia Zhao et al.

AAAI 2024arXiv:2312.09901
cold-start recommendationcollaborative filteringtemporal feature shiftsdistributionally robust optimization+2
18
citations
#37

EAT: Towards Long-Tailed Out-of-Distribution Detection

Tong Wei, Bo-Lin Wang, Min-Ling Zhang

AAAI 2024arXiv:2312.08939
out-of-distribution detectionlong-tailed distributionabstention classescontext augmentation+2
18
citations
#38

MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation

Min Zhang, Haoxuan Li, Fei Wu et al.

ICLR 2024
18
citations
#39

Revisiting Adversarial Training Under Long-Tailed Distributions

Xinli Yue, Ningping Mou, Qian Wang et al.

CVPR 2024
17
citations
#40

Unsupervised Layer-Wise Score Aggregation for Textual OOD Detection

Maxime Darrin, Guillaume Staerman, Eduardo Dadalto Camara Gomes et al.

AAAI 2024arXiv:2302.09852
out-of-distribution detectionanomaly score aggregationlayer-wise representationstextual ood benchmarks+3
17
citations
#41

Detecting Out-of-Distribution Through the Lens of Neural Collapse

Litian Liu, Yao Qin

CVPR 2025arXiv:2311.01479
out-of-distribution detectionneural collapsefeature clusteringsimplex equiangular tight frame+3
17
citations
#42

CIFAR-10-Warehouse: Broad and More Realistic Testbeds in Model Generalization Analysis

Xiaoxiao Sun, Xingjian Leng, Zijian Wang et al.

ICLR 2024
16
citations
#43

Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark

Yili Wang, Yixin Liu, Xu Shen et al.

ICLR 2025
16
citations
#44

ProxyDet: Synthesizing Proxy Novel Classes via Classwise Mixup for Open Vocabulary Object Detection

Joonhyun Jeong, Geondo Park, Jayeon Yoo et al.

AAAI 2024arXiv:2312.07266
open vocabulary object detectionproxy novel classesclip embedding spaceclasswise mixup+4
16
citations
#45

MetaOOD: Automatic Selection of OOD Detection Models

Yuehan Qin, Yichi Zhang, Yi Nian et al.

ICLR 2025arXiv:2410.03074
out-of-distribution detectionmodel selectionmeta-learningzero-shot learning+4
16
citations
#46

Semi-supervised Open-World Object Detection

Sahal Shaji Mullappilly, Abhishek Singh Gehlot, Rao Muhammad Anwer et al.

AAAI 2024arXiv:2402.16013
open-world object detectionsemi-supervised learningobject query representationsfeature-alignment scheme+4
15
citations
#47

CNC: Cross-modal Normality Constraint for Unsupervised Multi-class Anomaly Detection

Xiaolei Wang, Xiaoyang Wang, Huihui Bai et al.

AAAI 2025
15
citations
#48

Kernel-Aware Graph Prompt Learning for Few-Shot Anomaly Detection

Fenfang Tao, Guo-Sen Xie, Fang Zhao et al.

AAAI 2025
15
citations
#49

What How and When Should Object Detectors Update in Continually Changing Test Domains?

Jayeon Yoo, Dongkwan Lee, Inseop Chung et al.

CVPR 2024
15
citations
#50

A Noisy Elephant in the Room: Is Your Out-of-Distribution Detector Robust to Label Noise?

Galadrielle Humblot-Renaux, Sergio Escalera, Thomas B. Moeslund

CVPR 2024
15
citations
#51

PixOOD: Pixel-Level Out-of-Distribution Detection

Tomas Vojir, Jan Sochman, Jiri Matas

ECCV 2024
14
citations
#52

SPADE: Semi-supervised Anomaly Detection under Distribution Mismatch

Chun-Liang Li, Tomas Pfister, Kihyuk Sohn et al.

ICLR 2024
14
citations
#53

STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay

Yu Yongcan, Lijun Sheng, Ran He et al.

ECCV 2024arXiv:2407.15773
test-time adaptationoutlier detectiondistribution shiftopen-world inference+3
13
citations
#54

Just a Hint: Point-Supervised Camouflaged Object Detection

Huafeng Chen, Dian SHAO, Guangqian Guo et al.

ECCV 2024
13
citations
#55

How Contaminated Is Your Benchmark? Measuring Dataset Leakage in Large Language Models with Kernel Divergence

Hyeong Kyu Choi, Maxim Khanov, Hongxin Wei et al.

ICML 2025
13
citations
#56

GDA: Generalized Diffusion for Robust Test-time Adaptation

Yun-Yun Tsai, Fu-Chen Chen, Albert Chen et al.

CVPR 2024
13
citations
#57

UniNet: A Contrastive Learning-guided Unified Framework with Feature Selection for Anomaly Detection

Shun Wei, Jielin Jiang, Xiaolong Xu

CVPR 2025
13
citations
#58

Can OOD Object Detectors Learn from Foundation Models?

Jiahui Liu, Xin Wen, Shizhen Zhao et al.

ECCV 2024
12
citations
#59

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains

Eunsu Baek, Keondo Park, Ji-yoon Kim et al.

CVPR 2024
12
citations
#60

Detecting Backdoor Attacks in Federated Learning via Direction Alignment Inspection

Jiahao Xu, Zikai Zhang, Rui Hu

CVPR 2025
11
citations
#61

Benign Samples Matter! Fine-tuning On Outlier Benign Samples Severely Breaks Safety

Zihan Guan, Mengxuan Hu, Ronghang Zhu et al.

ICML 2025
11
citations
#62

CDMAD: Class-Distribution-Mismatch-Aware Debiasing for Class-Imbalanced Semi-Supervised Learning

Hyuck Lee, Heeyoung Kim

CVPR 2024
11
citations
#63

Deep Kernel Relative Test for Machine-generated Text Detection

Yiliao Song, Zhenqiao Yuan, Shuhai Zhang et al.

ICLR 2025
11
citations
#64

DOTA: Distributional Test-time Adaptation of Vision-Language Models

Zongbo Han, Jialong Yang, Guangyu Wang et al.

NeurIPS 2025
10
citations
#65

UCF-Crime-DVS: A Novel Event-Based Dataset for Video Anomaly Detection with Spiking Neural Networks

Yuanbin Qian, Shuhan Ye, Chong Wang et al.

AAAI 2025
10
citations
#66

YolOOD: Utilizing Object Detection Concepts for Multi-Label Out-of-Distribution Detection

Alon Zolfi, Guy AmiT, Amit Baras et al.

CVPR 2024
10
citations
#67

Learning Diffusion Models for Multi-View Anomaly Detection

Chieh Liu, Yu-Min Chu, Ting-I Hsieh et al.

ECCV 2024
multi-view anomaly detectiondiffusion modelsview-invariant controlnetddim scheme+3
9
citations
#68

Transition Path Sampling with Improved Off-Policy Training of Diffusion Path Samplers

Kiyoung Seong, Seonghyun Park, Seonghwan Kim et al.

ICLR 2025arXiv:2405.19961
transition path samplingdiffusion path samplerscollective variablesmolecular dynamics simulations+4
9
citations
#69

Adversarially Robust Out-of-Distribution Detection Using Lyapunov-Stabilized Embeddings

Hossein Mirzaei Sadeghlou, Mackenzie Mathis

ICLR 2025
9
citations
#70

Data Taggants: Dataset Ownership Verification Via Harmless Targeted Data Poisoning

Wassim Bouaziz, Nicolas Usunier, El-Mahdi El-Mhamdi

ICLR 2025
8
citations
#71

On the Limitations of Temperature Scaling for Distributions with Overlaps

Muthu Chidambaram, Rong Ge

ICLR 2024
8
citations
#72

Filter or Compensate: Towards Invariant Representation from Distribution Shift for Anomaly Detection

Zining Chen, Xingshuang Luo, Weiqiu Wang et al.

AAAI 2025
8
citations
#73

Local-Prompt: Extensible Local Prompts for Few-Shot Out-of-Distribution Detection

Fanhu Zeng, Zhen Cheng, Fei Zhu et al.

ICLR 2025
8
citations
#74

Activation Gradient based Poisoned Sample Detection Against Backdoor Attacks

Danni Yuan, Mingda Zhang, Shaokui Wei et al.

ICLR 2025
8
citations
#75

TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts

Youssef Mansour, Xuyang Zhong, Serdar Caglar et al.

ECCV 2024
7
citations
#76

Robustness Auditing for Linear Regression: To Singularity and Beyond

Ittai Rubinstein, Samuel Hopkins

ICLR 2025arXiv:2410.07916
robustness auditinglinear regressionordinary least squaressample removal+3
7
citations
#77

Pursuing Feature Separation based on Neural Collapse for Out-of-Distribution Detection

Yingwen Wu, Ruiji Yu, Xinwen Cheng et al.

ICLR 2025arXiv:2405.17816
out-of-distribution detectionneural collapsefeature separationpenultimate layer features+3
7
citations
#78

Weak Distribution Detectors Lead to Stronger Generalizability of Vision-Language Prompt Tuning

Kun Ding, Haojian Zhang, Qiang Yu et al.

AAAI 2024arXiv:2404.00603
vision-language modelsprompt tuningout-of-distribution detectionfew-shot learning+3
7
citations
#79

Assessing Pre-Trained Models for Transfer Learning Through Distribution of Spectral Components

Tengxue Zhang, Yang Shu, Xinyang Chen et al.

AAAI 2025
6
citations
#80

DRL: Decomposed Representation Learning for Tabular Anomaly Detection

Hangting Ye, He Zhao, Wei Fan et al.

ICLR 2025
6
citations
#81

Out-of-Variable Generalisation for Discriminative Models

Siyuan Guo, Jonas Wildberger, Bernhard Schoelkopf

ICLR 2024
6
citations
#82

Joint Out-of-Distribution Filtering and Data Discovery Active Learning

Sebastian Schmidt, Leonard Schenk, Leo Schwinn et al.

CVPR 2025
6
citations
#83

AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios

Ziming Huang, Xurui Li, Haotian Liu et al.

CVPR 2025
6
citations
#84

Near-Optimal Resilient Aggregation Rules for Distributed Learning Using 1-Center and 1-Mean Clustering with Outliers

Yuhao Yi, Ronghui You, Hong Liu et al.

AAAI 2024arXiv:2312.12835
byzantine machine learningresilient aggregation mechanismsdistributed learning systemsoutlier-robust clustering+4
5
citations
#85

Difficulty-aware Balancing Margin Loss for Long-tailed Recognition

Minseok Son, Inyong Koo, Jinyoung Park et al.

AAAI 2025
5
citations
#86

SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning

ZERUN WANG, Liuyu Xiang, Lang Huang et al.

ECCV 2024arXiv:2409.17512
open-set semi-supervised learningout-of-distribution detectionself-training methodsdecision boundary learning+2
5
citations
#87

Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAV Target Detection

Houzhang Fang, Xiaolin Wang, Zengyang Li et al.

CVPR 2025
5
citations
#88

Spotting the Unexpected (STU): A 3D LiDAR Dataset for Anomaly Segmentation in Autonomous Driving

Alexey Nekrasov, Malcolm Burdorf, Stewart Worrall et al.

CVPR 2025
5
citations
#89

Guaranteeing Out-Of-Distribution Detection in Deep RL via Transition Estimation

Mohit Prashant, Arvind Easwaran, Suman Das et al.

AAAI 2025
5
citations
#90

ProSub: Probabilistic Open-Set Semi-Supervised Learning with Subspace-Based Out-of-Distribution Detection

Erik Wallin, Lennart Svensson, Fredrik Kahl et al.

ECCV 2024
5
citations
#91

TagFog: Textual Anchor Guidance and Fake Outlier Generation for Visual Out-of-Distribution Detection

Jiankang Chen, Tong Zhang, Wei-shi Zheng et al.

AAAI 2024arXiv:2412.05292
out-of-distribution detectiontextual anchor guidancefake outlier generationvisual encoder training+3
5
citations
#92

ODDN: Addressing Unpaired Data Challenges in Open-World Deepfake Detection on Online Social Networks

Renshuai Tao, Manyi Le, Chuangchuang Tan et al.

AAAI 2025
4
citations
#93

Subgraph Aggregation for Out-of-Distribution Generalization on Graphs

Bowen Liu, Haoyang Li, Shuning Wang et al.

AAAI 2025
4
citations
#94

Disentangling Tabular Data Towards Better One-Class Anomaly Detection

Jianan Ye, Zhaorui Tan, Yijie Hu et al.

AAAI 2025
4
citations
#95

PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection

Wei Li, Pin-Yu Chen, Sijia Liu et al.

CVPR 2025
4
citations
#96

Tight Rates in Supervised Outlier Transfer Learning

Mohammadreza Mousavi Kalan, Samory Kpotufe

ICLR 2024
4
citations
#97

DF-MIA: A Distribution-Free Membership Inference Attack on Fine-Tuned Large Language Models

Zhiheng Huang, Yannan Liu, Daojing He et al.

AAAI 2025
4
citations
#98

Simplification Is All You Need against Out-of-Distribution Overconfidence

Keke Tang, Chao Hou, Weilong Peng et al.

CVPR 2025
4
citations
#99

Learning by Erasing: Conditional Entropy Based Transferable Out-of-Distribution Detection

Meng Xing, Zhiyong Feng, Yong Su et al.

AAAI 2024arXiv:2204.11041
out-of-distribution detectiondistribution shiftsdeep generative modelsconditional entropy+4
4
citations
#100

Lie Detector: Unified Backdoor Detection via Cross-Examination Framework

Xuan Wang, Siyuan Liang, Dongping Liao et al.

NeurIPS 2025
3
citations