🧬Language Models

In-Context Learning

Learning from examples in the prompt without fine-tuning

100 papers2,706 total citations
Compare with other topics
Feb '24 Jan '26264 papers
Also includes: in-context learning, icl, few-shot prompting, prompt-based learning

Top Papers

#1

Generative Multimodal Models are In-Context Learners

Quan Sun, Yufeng Cui, Xiaosong Zhang et al.

CVPR 2024
422
citations
#2

A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting

Junhao Zhuang, Yanhong Zeng, WENRAN LIU et al.

ECCV 2024
152
citations
#3

Understanding Catastrophic Forgetting in Language Models via Implicit Inference

Suhas Kotha, Jacob Springer, Aditi Raghunathan

ICLR 2024
103
citations
#4

Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer Control

Longtao Zheng, Rundong Wang, Xinrun Wang et al.

ICLR 2024
103
citations
#5

Consistency-guided Prompt Learning for Vision-Language Models

Shuvendu Roy, Ali Etemad

ICLR 2024
91
citations
#6

Making Text Embedders Few-Shot Learners

Chaofan Li, Minghao Qin, Shitao Xiao et al.

ICLR 2025
85
citations
#7

How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?

Jingfeng Wu, Difan Zou, Zixiang Chen et al.

ICLR 2024
85
citations
#8

In-Context Pretraining: Language Modeling Beyond Document Boundaries

Weijia Shi, Sewon Min, Maria Lomeli et al.

ICLR 2024
81
citations
#9

Batch Calibration: Rethinking Calibration for In-Context Learning and Prompt Engineering

Han Zhou, Xingchen Wan, Lev Proleev et al.

ICLR 2024
81
citations
#10

BadCLIP: Trigger-Aware Prompt Learning for Backdoor Attacks on CLIP

Jiawang Bai, Kuofeng Gao, Shaobo Min et al.

CVPR 2024
68
citations
#11

HGPrompt: Bridging Homogeneous and Heterogeneous Graphs for Few-Shot Prompt Learning

Xingtong Yu, Yuan Fang, Zemin Liu et al.

AAAI 2024arXiv:2312.01878
graph neural networksheterogeneous graph representationfew-shot learningprompt learning+4
59
citations
#12

In-Context Learning Learns Label Relationships but Is Not Conventional Learning

Jannik Kossen, Yarin Gal, Tom Rainforth

ICLR 2024
53
citations
#13

Visual In-Context Prompting

Feng Li, Qing Jiang, Hao Zhang et al.

CVPR 2024
52
citations
#14

FlexPrefill: A Context-Aware Sparse Attention Mechanism for Efficient Long-Sequence Inference

Xunhao Lai, Jianqiao Lu, Yao Luo et al.

ICLR 2025arXiv:2502.20766
attention mechanismsparse attentionlong-sequence inferencequery-aware patterns+2
51
citations
#15

Context is Key: A Benchmark for Forecasting with Essential Textual Information

Andrew Williams, Arjun Ashok, Étienne Marcotte et al.

ICML 2025
42
citations
#16

Two-stage LLM Fine-tuning with Less Specialization and More Generalization

Yihan Wang, Si Si, Daliang Li et al.

ICLR 2024
42
citations
#17

One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained Vision-Language Models

Lin Li, Haoyan Guan, Jianing Qiu et al.

CVPR 2024
42
citations
#18

GalLop: Learning global and local prompts for vision-language models

Marc Lafon, Elias Ramzi, Clément Rambour et al.

ECCV 2024arXiv:2407.01400
prompt learningvision-language modelsfew-shot classificationdomain generalization+4
39
citations
#19

When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations

Aleksandar Petrov, Philip Torr, Adel Bibi

ICLR 2024
38
citations
#20

Prompting Hard or Hardly Prompting: Prompt Inversion for Text-to-Image Diffusion Models

Shweta Mahajan, Tanzila Rahman, Kwang Moo Yi et al.

CVPR 2024
35
citations
#21

Which Attention Heads Matter for In-Context Learning?

Kayo Yin, Jacob Steinhardt

ICML 2025
34
citations
#22

Prompting Language-Informed Distribution for Compositional Zero-Shot Learning

Wentao Bao, Lichang Chen, Heng Huang et al.

ECCV 2024
34
citations
#23

MAGIC: Generating Self-Correction Guideline for In-Context Text-to-SQL

Arian Askari, Christian Poelitz, Xinye Tang

AAAI 2025
33
citations
#24

Multi-Prompts Learning with Cross-Modal Alignment for Attribute-Based Person Re-identification

Yajing Zhai, Yawen Zeng, Zhiyong Huang et al.

AAAI 2024arXiv:2312.16797
person re-identificationcross-modal alignmentprompt learningattribute descriptions+3
33
citations
#25

Adversarial Prompt Tuning for Vision-Language Models

Jiaming Zhang, Xingjun Ma, Xin Wang et al.

ECCV 2024
33
citations
#26

Exploring Sparse Visual Prompt for Domain Adaptive Dense Prediction

Senqiao Yang, Jiarui Wu, Jiaming Liu et al.

AAAI 2024arXiv:2303.09792
sparse visual promptsdomain adaptationdense predictiontest-time adaptation+4
32
citations
#27

Prompt Compression with Context-Aware Sentence Encoding for Fast and Improved LLM Inference

Barys Liskavets, Maxim Ushakov, Shuvendu Roy et al.

AAAI 2025
31
citations
#28

Soft Prompt Generation for Domain Generalization

Shuanghao Bai, Yuedi Zhang, Wanqi Zhou et al.

ECCV 2024arXiv:2404.19286
soft prompt learningdomain generalizationvision language modelsprompt generation+4
30
citations
#29

Understanding In-Context Learning from Repetitions

Jianhao (Elliott) Yan, Jin Xu, Chiyu Song et al.

ICLR 2024
29
citations
#30

ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning

Beomyoung Kim, Joonsang Yu, Sung Ju Hwang

CVPR 2024
27
citations
#31

Skeleton-in-Context: Unified Skeleton Sequence Modeling with In-Context Learning

Xinshun Wang, Zhongbin Fang, Xia Li et al.

CVPR 2024
26
citations
#32

Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection

Ting Lei, Shaofeng Yin, Yuxin Peng et al.

ECCV 2024
25
citations
#33

Cascade Prompt Learning for Visual-Language Model Adaptation

Ge Wu, Xin Zhang, Zheng Li et al.

ECCV 2024
24
citations
#34

Semantic Residual Prompts for Continual Learning

Martin Menabue, Emanuele Frascaroli, Matteo Boschini et al.

ECCV 2024
24
citations
#35

miniCTX: Neural Theorem Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck

ICLR 2025
23
citations
#36

ICLR: In-Context Learning of Representations

Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana et al.

ICLR 2025
23
citations
#37

Unknown Prompt the only Lacuna: Unveiling CLIP's Potential for Open Domain Generalization

Mainak Singha, Ankit Jha, Shirsha Bose et al.

CVPR 2024
23
citations
#38

Customizing Language Model Responses with Contrastive In-Context Learning

Xiang Gao, Kamalika Das

AAAI 2024arXiv:2401.17390
contrastive learninglanguage model alignmentin-context learningintent customization+4
19
citations
#39

OVOR: OnePrompt with Virtual Outlier Regularization for Rehearsal-Free Class-Incremental Learning

Wei-Cheng Huang, Chun-Fu Chen, Hsiang Hsu

ICLR 2024
18
citations
#40

Code-Style In-Context Learning for Knowledge-Based Question Answering

Zhijie Nie, Richong Zhang, Zhongyuan Wang et al.

AAAI 2024arXiv:2309.04695
knowledge-based question answeringin-context learningsemantic parsinglogical form generation+3
18
citations
#41

Controllable Context Sensitivity and the Knob Behind It

Julian Minder, Kevin Du, Niklas Stoehr et al.

ICLR 2025
17
citations
#42

One-stage Prompt-based Continual Learning

Youngeun Kim, YUHANG LI, Priyadarshini Panda

ECCV 2024
17
citations
#43

Context Diffusion: In-Context Aware Image Generation

Ivona Najdenkoska, Animesh Sinha, Abhimanyu Dubey et al.

ECCV 2024
16
citations
#44

PromptIQA: Boosting the Performance and Generalization for No-Reference Image Quality Assessment via Prompts

Zewen Chen, Haina Qin, Juan Wang et al.

ECCV 2024
16
citations
#45

Hierarchical Context Pruning: Optimizing Real-World Code Completion with Repository-Level Pretrained Code LLMs

Lei Zhang, Yunshui Li, Jiaming Li et al.

AAAI 2025
15
citations
#46

Learning to Learn Better Visual Prompts

Fengxiang Wang, Wanrong Huang, Shaowu Yang et al.

AAAI 2024
14
citations
#47

Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning

Jian Lang, Zhangtao Cheng, Ting Zhong et al.

AAAI 2025
14
citations
#48

Finding Visual Task Vectors

Alberto Hojel, Yutong Bai, Trevor Darrell et al.

ECCV 2024
14
citations
#49

Compound Text-Guided Prompt Tuning via Image-Adaptive Cues

Hao Tan, Jun Li, Yizhuang Zhou et al.

AAAI 2024arXiv:2312.06401
prompt tuningvision-language modelsfew-shot recognitiondomain generalization+3
13
citations
#50

Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models

Can Demircan, Tankred Saanum, Akshay Jagadish et al.

ICLR 2025
11
citations
#51

Test-Time Personalization with Meta Prompt for Gaze Estimation

Huan Liu, Julia Qi, Zhenhao Li et al.

AAAI 2024arXiv:2401.01577
gaze estimationtest-time personalizationprompt tuningmeta-learning+2
11
citations
#52

Context Steering: Controllable Personalization at Inference Time

Zhiyang He, Sashrika Pandey, Mariah Schrum et al.

ICLR 2025
11
citations
#53

Revisiting In-context Learning Inference Circuit in Large Language Models

Hakaze Cho, Mariko Kato, Yoshihiro Sakai et al.

ICLR 2025
11
citations
#54

Adaptive Prompting for Continual Relation Extraction: A Within-Task Variance Perspective

Minh Le, Tien Ngoc Luu, An Nguyen The et al.

AAAI 2025
11
citations
#55

Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting

Suraj Anand, Michael Lepori, Jack Merullo et al.

ICLR 2025
10
citations
#56

Understanding prompt engineering may not require rethinking generalization

Victor Akinwande, Yiding Jiang, Dylan Sam et al.

ICLR 2024
10
citations
#57

Strategy Coopetition Explains the Emergence and Transience of In-Context Learning

Aaditya Singh, Ted Moskovitz, Sara Dragutinović et al.

ICML 2025
9
citations
#58

Context-Parametric Inversion: Why Instruction Finetuning May Not Actually Improve Context Reliance

Sachin Goyal, Christina Baek, Zico Kolter et al.

ICLR 2025
9
citations
#59

On the Training Convergence of Transformers for In-Context Classification of Gaussian Mixtures

Wei Shen, Ruida Zhou, Jing Yang et al.

ICML 2025
9
citations
#60

Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt Learning with Data-Dependent Prior

Youngjae Cho, HeeSun Bae, Seungjae Shin et al.

AAAI 2024arXiv:2401.06799
vision-language pretrained modelsprompt learningfew-shot learningbayesian modeling+4
9
citations
#61

Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning

Xialei Liu, Jiang-Tian Zhai, Andrew Bagdanov et al.

CVPR 2024
8
citations
#62

Do-PFN: In-Context Learning for Causal Effect Estimation

Jake Robertson, Arik Reuter, Siyuan Guo et al.

NeurIPS 2025
8
citations
#63

Implicit In-context Learning

Zhuowei Li, Zihao Xu, Ligong Han et al.

ICLR 2025arXiv:2405.14660
in-context learninglarge language modelsinference-time interventioncontext vector generation+4
8
citations
#64

RAVE: Residual Vector Embedding for CLIP-Guided Backlit Image Enhancement

Tatiana Gaintseva, Martin Benning, Greg Slabaugh

ECCV 2024
8
citations
#65

Mimic In-Context Learning for Multimodal Tasks

Yuchu Jiang, Jiale Fu, chenduo hao et al.

CVPR 2025
8
citations
#66

Bottom-Up Domain Prompt Tuning for Generalized Face Anti-Spoofing

SI-QI LIU, Qirui Wang, Pong Chi Yuen

ECCV 2024
face anti-spoofingvision-language modelprompt tuningdomain generalization+4
8
citations
#67

CAPrompt: Cyclic Prompt Aggregation for Pre-Trained Model Based Class Incremental Learning

Qiwei Li, Jiahuan Zhou

AAAI 2025
7
citations
#68

Componential Prompt-Knowledge Alignment for Domain Incremental Learning

Kunlun Xu, Xu Zou, Gang Hua et al.

ICML 2025
7
citations
#69

In-context Time Series Predictor

Jiecheng Lu, Yan Sun, Shihao Yang

ICLR 2025
7
citations
#70

Utilize the Flow Before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning

Runchuan Zhu, Zhipeng Ma, Jiang Wu et al.

AAAI 2025
6
citations
#71

Adaptive Few-shot Prompting for Machine Translation with Pre-trained Language Models

Lei Tang, Jinghui Qin, Wenxuan Ye et al.

AAAI 2025
6
citations
#72

ELICIT: LLM Augmentation Via External In-context Capability

Futing Wang, Jianhao (Elliott) Yan, Yue Zhang et al.

ICLR 2025
6
citations
#73

IMDPrompter: Adapting SAM to Image Manipulation Detection by Cross-View Automated Prompt Learning

Quan Zhang, Yuxin Qi, Xi Tang et al.

ICLR 2025arXiv:2502.02454
image manipulation detectionautomated prompt learningsegment anything modelcross-view perception+3
6
citations
#74

Noise-assisted Prompt Learning for Image Forgery Detection and Localization

Dong Li, Jiaying Zhu, Xueyang Fu et al.

ECCV 2024
6
citations
#75

In-Context Matting

He Guo, Zixuan Ye, Zhiguo Cao et al.

CVPR 2024
6
citations
#76

OpenKD: Opening Prompt Diversity for Zero- and Few-shot Keypoint Detection

Changsheng Lu, Zheyuan Liu, Piotr Koniusz

ECCV 2024
5
citations
#77

Advancing Prompt-Based Methods for Replay-Independent General Continual Learning

Zhiqi KANG, Liyuan Wang, Xingxing Zhang et al.

ICLR 2025
5
citations
#78

Data-adaptive Differentially Private Prompt Synthesis for In-Context Learning

Fengyu Gao, Ruida Zhou, Tianhao Wang et al.

ICLR 2025
5
citations
#79

GAPrompt: Geometry-Aware Point Cloud Prompt for 3D Vision Model

Zixiang Ai, Zichen Liu, Yuanhang Lei et al.

ICML 2025
5
citations
#80

In-Context Learning and Occam's Razor

Eric Elmoznino, Tom Marty, Tejas Kasetty et al.

ICML 2025
5
citations
#81

Self-Generated In-Context Examples Improve LLM Agents for Sequential Decision-Making Tasks

Vishnu Sarukkai, Zhiqiang Xie, Kayvon Fatahalian

NeurIPS 2025arXiv:2505.00234
in-context learningsequential decision-makingllm agentstrajectory bootstrapping+3
4
citations
#82

Labels Need Prompts Too: Mask Matching for Natural Language Understanding Tasks

Bo Li, Wei Ye, Quansen Wang et al.

AAAI 2024arXiv:2312.08726
mask matchingprompt tuningnatural language understandinglabel prompting+3
4
citations
#83

On the Loss of Context Awareness in General Instruction Fine-tuning

Yihan Wang, Andrew Bai, Nanyun Peng et al.

NeurIPS 2025
4
citations
#84

Divide-Solve-Combine: An Interpretable and Accurate Prompting Framework for Zero-shot Multi-Intent Detection

Libo Qin, Qiguang Chen, Jingxuan Zhou et al.

AAAI 2025
4
citations
#85

Understanding Prompt Tuning and In-Context Learning via Meta-Learning

Tim Genewein, Kevin Li, Jordi Grau-Moya et al.

NeurIPS 2025
4
citations
#86

The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation

Patrick Kahardipraja, Reduan Achtibat, Thomas Wiegand et al.

NeurIPS 2025
4
citations
#87

Fictitious Synthetic Data Can Improve LLM Factuality via Prerequisite Learning

Yujian Liu, Shiyu Chang, Tommi Jaakkola et al.

ICLR 2025
4
citations
#88

In-Context Learning Strategies Emerge Rationally

Daniel Wurgaft, Ekdeep S Lubana, Core Francisco Park et al.

NeurIPS 2025
4
citations
#89

Generating Traffic Scenarios via In-Context Learning to Learn Better Motion Planner

Aizierjiang Aiersilan

AAAI 2025
4
citations
#90

ARTICLE: Annotator Reliability Through In-Context Learning

Sujan Dutta, Deepak Pandita, Tharindu Cyril Weerasooriya et al.

AAAI 2025
4
citations
#91

Do different prompting methods yield a common task representation in language models?

Guy Davidson, Todd Gureckis, Brenden Lake et al.

NeurIPS 2025
4
citations
#92

Training Free Exponential Context Extension via Cascading KV Cache

Jeff Willette, Heejun Lee, Youngwan Lee et al.

ICLR 2025
3
citations
#93

Task Descriptors Help Transformers Learn Linear Models In-Context

Ruomin Huang, Rong Ge

ICLR 2025
3
citations
#94

Open-World Dynamic Prompt and Continual Visual Representation Learning

Youngeun Kim, Jun Fang, Qin Zhang et al.

ECCV 2024
3
citations
#95

Customized Generation Reimagined: Fidelity and Editability Harmonized

Jian Jin, Yang Shen, Zhenyong Fu et al.

ECCV 2024
3
citations
#96

SEC-Prompt:SEmantic Complementary Prompting for Few-Shot Class-Incremental Learning

Ye Liu, Meng Yang

CVPR 2025
2
citations
#97

Attack on Prompt: Backdoor Attack in Prompt-Based Continual Learning

Trang Nguyen, Anh Tran, Nhat Ho

AAAI 2025
2
citations
#98

SAM-REF: Introducing Image-Prompt Synergy during Interaction for Detail Enhancement in the Segment Anything Model

Chongkai Yu, Ting Liu, Li Anqi et al.

CVPR 2025
2
citations
#99

Teaching VLMs to Localize Specific Objects from In-context Examples

Sivan Doveh, Nimrod Shabtay, Eli Schwartz et al.

ICCV 2025
2
citations
#100

Embracing Collaboration Over Competition: Condensing Multiple Prompts for Visual In-Context Learning

Jinpeng Wang, Tianci Luo, Yaohua Zha et al.

CVPR 2025
2
citations