🧬Learning Paradigms

Few-Shot Learning

Learning from very few examples

100 papers2,014 total citations
Compare with other topics
Feb '24 Jan '26292 papers
Also includes: few-shot learning, few shot, low-shot learning, n-shot learning

Top Papers

#1

Fast Machine Unlearning without Retraining through Selective Synaptic Dampening

Jack Foster, Stefan Schoepf, Alexandra Brintrup

AAAI 2024arXiv:2308.07707
machine unlearningselective synaptic dampeningfisher information matrixpost hoc unlearning+3
170
citations
#2

FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base Question Answering

Zhenyu Li, Sunqi Fan, Yu Gu et al.

AAAI 2024arXiv:2308.12060
knowledge base question answeringfew-shot learningsparql query generationprogram translation+4
122
citations
#3

Making Text Embedders Few-Shot Learners

Chaofan Li, Minghao Qin, Shitao Xiao et al.

ICLR 2025
85
citations
#4

MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning

Baoquan Zhang, Chuyao Luo, Demin Yu et al.

AAAI 2024arXiv:2307.16424
meta-learningfew-shot learningdiffusion modelsgradient-based optimization+4
76
citations
#5

LLaFS: When Large Language Models Meet Few-Shot Segmentation

Lanyun Zhu, Tianrun Chen, Deyi Ji et al.

CVPR 2024
73
citations
#6

A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models

Julio Silva-Rodríguez, Sina Hajimiri, Ismail Ben Ayed et al.

CVPR 2024
61
citations
#7

Few-Shot Object Detection with Foundation Models

Guangxing Han, Ser-Nam Lim

CVPR 2024
50
citations
#8

Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector

Yuqian Fu, Yu Wang, Yixuan Pan et al.

ECCV 2024
48
citations
#9

How Two-Layer Neural Networks Learn, One (Giant) Step at a Time

Yatin Dandi, Florent Krzakala, Bruno Loureiro et al.

ICLR 2025arXiv:2305.18270
gradient descent dynamicsfeature learning regimehigh-dimensional gaussian databatch size effects+4
47
citations
#10

Pre-trained Vision and Language Transformers Are Few-Shot Incremental Learners

Keon Hee Park, Kyungwoo Song, Gyeong-Moon Park

CVPR 2024
45
citations
#11

Knowledge-Enhanced Dual-stream Zero-shot Composed Image Retrieval

Yucheng Suo, Fan Ma, Linchao Zhu et al.

CVPR 2024
45
citations
#12

Cross-Layer and Cross-Sample Feature Optimization Network for Few-Shot Fine-Grained Image Classification

Zhen-Xiang Ma, Zhen-Duo Chen, Li-Jun Zhao et al.

AAAI 2024
45
citations
#13

Fine-Grained Prototypes Distillation for Few-Shot Object Detection

Zichen Wang, Bo Yang, Haonan Yue et al.

AAAI 2024arXiv:2401.07629
few-shot object detectionmeta-learningfeature aggregationprototype distillation+4
44
citations
#14

DAVE - A Detect-and-Verify Paradigm for Low-Shot Counting

Jer Pelhan, Alan Lukezic, Vitjan Zavrtanik et al.

CVPR 2024
43
citations
#15

Does CLIP’s generalization performance mainly stem from high train-test similarity?

Prasanna Mayilvahanan, Thaddäus Wiedemer, Evgenia Rusak et al.

ICLR 2024
40
citations
#16

ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection

Yichen Bai, Zongbo Han, Bing Cao et al.

CVPR 2024
40
citations
#17

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Ekin Akyürek, Mehul Damani, Adam Zweiger et al.

ICML 2025
40
citations
#18

Simple Semantic-Aided Few-Shot Learning

Hai Zhang, Junzhe Xu, Shanlin Jiang et al.

CVPR 2024
33
citations
#19

Transductive Zero-Shot and Few-Shot CLIP

Ségolène Martin, Yunshi HUANG, Fereshteh Shakeri et al.

CVPR 2024
32
citations
#20

Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation

Yuan Yuan, Chenyang Shao, Jingtao Ding et al.

ICLR 2024
31
citations
#21

Relevant Intrinsic Feature Enhancement Network for Few-Shot Semantic Segmentation

Xiaoyi Bao, Jie Qin, Siyang Sun et al.

AAAI 2024arXiv:2312.06474
few-shot semantic segmentationintrinsic feature enhancementmulti-level prototype generationsemantic ambiguity+4
30
citations
#22

CAT-SAM: Conditional Tuning for Few-Shot Adaptation of Segment Anything Model

Aoran Xiao, Weihao Xuan, Heli Qi et al.

ECCV 2024
28
citations
#23

Machine Unlearning Fails to Remove Data Poisoning Attacks

Martin Pawelczyk, Jimmy Di, Yiwei Lu et al.

ICLR 2025
28
citations
#24

No Time to Train: Empowering Non-Parametric Networks for Few-shot 3D Scene Segmentation

Xiangyang Zhu, Renrui Zhang, Bowei He et al.

CVPR 2024
27
citations
#25

TiRex: Zero-Shot Forecasting Across Long and Short Horizons with Enhanced In-Context Learning

Andreas Auer, Patrick Podest, Daniel Klotz et al.

NeurIPS 2025
26
citations
#26

Adapt Before Comparison: A New Perspective on Cross-Domain Few-Shot Segmentation

Jonas Herzog

CVPR 2024
25
citations
#27

Exploring Unbiased Deepfake Detection via Token-Level Shuffling and Mixing

Xinghe Fu, Zhiyuan Yan, Taiping Yao et al.

AAAI 2025
24
citations
#28

AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning

Yuwei Tang, ZhenYi Lin, Qilong Wang et al.

CVPR 2024
24
citations
#29

Does Few-Shot Learning Suffer from Backdoor Attacks?

Xinwei Liu, Xiaojun Jia, Jindong Gu et al.

AAAI 2024arXiv:2401.01377
few-shot learningbackdoor attacksattack success ratebenign accuracy+4
23
citations
#30

Summarizing Stream Data for Memory-Constrained Online Continual Learning

Jianyang Gu, Kai Wang, Wei Jiang et al.

AAAI 2024arXiv:2305.16645
online continual learningreplay-based methodsmemory buffer optimizationknowledge distillation+3
22
citations
#31

Towards Scalable Exact Machine Unlearning Using Parameter-Efficient Fine-Tuning

Somnath Basu Roy Chowdhury, Krzysztof Choromanski, Arijit Sehanobish et al.

ICLR 2025arXiv:2406.16257
machine unlearningexact unlearningparameter-efficient fine-tuningparameter isolation+4
22
citations
#32

Flatten Long-Range Loss Landscapes for Cross-Domain Few-Shot Learning

Yixiong Zou, Yicong Liu, Yiman Hu et al.

CVPR 2024
22
citations
#33

Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection

Zhen Qu, Xian Tao, Xinyi Gong et al.

CVPR 2025
22
citations
#34

Adaptive FSS: A Novel Few-Shot Segmentation Framework via Prototype Enhancement

Jing Wang, Jiangyun Li, Chen Chen et al.

AAAI 2024arXiv:2312.15731
few-shot segmentationprototype enhancementadapter mechanismmeta-learning+3
21
citations
#35

ElasticTok: Adaptive Tokenization for Image and Video

Wilson Yan, Volodymyr Mnih, Aleksandra Faust et al.

ICLR 2025
21
citations
#36

Large Language Models are Good Prompt Learners for Low-Shot Image Classification

Zhaoheng Zheng, Jingmin Wei, Xuefeng Hu et al.

CVPR 2024
21
citations
#37

Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation

Guan Gui, Bin-Bin Gao, Jun Liu et al.

ECCV 2024
21
citations
#38

MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation

Min Zhang, Haoxuan Li, Fei Wu et al.

ICLR 2024
18
citations
#39

CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning

Junghun Oh, Sungyong Baik, Kyoung Mu Lee

ECCV 2024
16
citations
#40

Kernel-Aware Graph Prompt Learning for Few-Shot Anomaly Detection

Fenfang Tao, Guo-Sen Xie, Fang Zhao et al.

AAAI 2025
15
citations
#41

FrugalNeRF: Fast Convergence for Extreme Few-shot Novel View Synthesis without Learned Priors

Chin-Yang Lin, Chung-Ho Wu, Changhan Yeh et al.

CVPR 2025
15
citations
#42

Few-Shot Recognition via Stage-Wise Retrieval-Augmented Finetuning

Tian Liu, Huixin Zhang, Shubham Parashar et al.

CVPR 2025
15
citations
#43

Event Camera Data Dense Pre-training

Yan Yang, Liyuan Pan, Liu liu

ECCV 2024
13
citations
#44

Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction

Vaishnavh Nagarajan, Chen Wu, Charles Ding et al.

ICML 2025
13
citations
#45

Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning

Rashindrie Perera, Saman Halgamuge

CVPR 2024
12
citations
#46

Lipsum-FT: Robust Fine-Tuning of Zero-Shot Models Using Random Text Guidance

Giung Nam, Byeongho Heo, Juho Lee

ICLR 2024
12
citations
#47

SeaS: Few-shot Industrial Anomaly Image Generation with Separation and Sharing Fine-tuning

Zhewei Dai, Shilei Zeng, Haotian Liu et al.

ICCV 2025
11
citations
#48

Task-Disruptive Background Suppression for Few-Shot Segmentation

Suho Park, SuBeen Lee, Sangeek Hyun et al.

AAAI 2024arXiv:2312.15894
few-shot segmentationbackground suppressionsupport background featuresquery background similarity+4
11
citations
#49

DeIL: Direct-and-Inverse CLIP for Open-World Few-Shot Learning

Shuai Shao, Yu Bai, Yan WANG et al.

CVPR 2024
11
citations
#50

Synergistic Anchored Contrastive Pre-training for Few-Shot Relation Extraction

Da Luo, Yanglei Gan, Rui Hou et al.

AAAI 2024arXiv:2312.12021
few-shot relation extractioncontrastive learningpre-trained language modelssentence-anchored contrastive loss+4
11
citations
#51

Benchmarking Spurious Bias in Few-Shot Image Classifiers

Guangtao Zheng, Wenqian Ye, Aidong Zhang

ECCV 2024
11
citations
#52

Understanding prompt engineering may not require rethinking generalization

Victor Akinwande, Yiding Jiang, Dylan Sam et al.

ICLR 2024
10
citations
#53

Epitopological learning and Cannistraci-Hebb network shape intelligence brain-inspired theory for ultra-sparse advantage in deep learning

Yingtao Zhang, Jialin Zhao, Wenjing Wu et al.

ICLR 2024
9
citations
#54

DeepCalliFont: Few-Shot Chinese Calligraphy Font Synthesis by Integrating Dual-Modality Generative Models

Yitian Liu, Zhouhui Lian

AAAI 2024arXiv:2312.10314
few-shot font generationchinese calligraphy synthesisdual-modality generative modelsglyph image synthesis+4
9
citations
#55

ZOOM: Learning Video Mirror Detection with Extremely-Weak Supervision

Ke Xu, Tsun Wai Siu, Rynson W.H. Lau

AAAI 2024
9
citations
#56

SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection

Anay Majee, Ryan X Sharp, Rishabh Iyer

ECCV 2024
9
citations
#57

MVREC: A General Few-shot Defect Classification Model Using Multi-View Region-Context

Shuai Lyu, Rongchen Zhang, Zeqi Ma et al.

AAAI 2025
8
citations
#58

Adversarially Robust Few-shot Learning via Parameter Co-distillation of Similarity and Class Concept Learners

Junhao Dong, Piotr Koniusz, Junxi Chen et al.

CVPR 2024
8
citations
#59

Leveraging Normalization Layer in Adapters with Progressive Learning and Adaptive Distillation for Cross-Domain Few-Shot Learning

YongJin Yang, Taehyeon Kim, Se-Young Yun

AAAI 2024arXiv:2312.11260
cross-domain few-shot learningnormalization layer adaptersprogressive learningadaptive distillation+4
8
citations
#60

Synthetic Prior for Few-Shot Drivable Head Avatar Inversion

Wojciech Zielonka, Stephan J. Garbin, Alexandros Lattas et al.

CVPR 2025
8
citations
#61

A Dynamic Learning Method towards Realistic Compositional Zero-Shot Learning

Xiaoming Hu, Zilei Wang

AAAI 2024
8
citations
#62

Capture Global Feature Statistics for One-Shot Federated Learning

Zenghao Guan, Yucan Zhou, Xiaoyan Gu

AAAI 2025
7
citations
#63

Instance-based Max-margin for Practical Few-shot Recognition

Minghao Fu, Ke Zhu

CVPR 2024
7
citations
#64

TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts

Youssef Mansour, Xuyang Zhong, Serdar Caglar et al.

ECCV 2024
7
citations
#65

FALIP: Visual Prompt as Foveal Attention Boosts CLIP Zero-Shot Performance

Jiedong Zhuang, Jiaqi Hu, Lianrui Mu et al.

ECCV 2024
7
citations
#66

Catch-Up Mix: Catch-Up Class for Struggling Filters in CNN

Minsoo Kang, Minkoo Kang, Suhyun Kim

AAAI 2024arXiv:2401.13193
filter reliance mitigationactivation map mixingconvolutional neural networksimage classification+4
7
citations
#67

FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification

Zhengrui Guo, Conghao Xiong, Jiabo MA et al.

CVPR 2025
7
citations
#68

H-ensemble: An Information Theoretic Approach to Reliable Few-Shot Multi-Source-Free Transfer

Yanru Wu, Jianning Wang, Weida Wang et al.

AAAI 2024arXiv:2312.12489
multi-source transfer learningfew-shot learningtransferability metricssource model ensemble+4
7
citations
#69

Adaptive Few-shot Prompting for Machine Translation with Pre-trained Language Models

Lei Tang, Jinghui Qin, Wenxuan Ye et al.

AAAI 2025
6
citations
#70

ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models

Yassir Bendou, Amine Ouasfi, Vincent Gripon et al.

CVPR 2025
6
citations
#71

Logits DeConfusion with CLIP for Few-Shot Learning

Shuo Li, Fang Liu, Zehua Hao et al.

CVPR 2025arXiv:2504.12104
few-shot learningvisual-language alignmentlogits deconfusioninter-class confusion+3
6
citations
#72

Liberating Seen Classes: Boosting Few-Shot and Zero-Shot Text Classification via Anchor

Han Liu, Siyang Zhao, Xiaotong Zhang et al.

AAAI 2024arXiv:2405.03565
few-shot text classificationzero-shot text classificationpre-trained language modelspseudo sample generation+4
6
citations
#73

Self-Prompt Mechanism for Few-Shot Image Recognition

Mingchen Song, Huiqiang Wang, Guoqiang Zhong

AAAI 2024
6
citations
#74

Few-Shot, No Problem: Descriptive Continual Relation Extraction

Nguyen Xuan Thanh, Anh Duc Le, Quyen Tran et al.

AAAI 2025
5
citations
#75

Learning with Unreliability: Fast Few-shot Voxel Radiance Fields with Relative Geometric Consistency

Xu Yingjie, Bangzhen Liu, Hao Tang et al.

CVPR 2024
5
citations
#76

Demystifying Language Model Forgetting with Low-rank Example Associations

Xisen Jin, Xiang Ren

NeurIPS 2025arXiv:2406.14026
language model forgettinglow-rank approximationmatrix completionfine-tuning analysis+4
5
citations
#77

Minimalist Vision with Freeform Pixels

Jeremy Klotz, Shree Nayar

ECCV 2024
5
citations
#78

OpenKD: Opening Prompt Diversity for Zero- and Few-shot Keypoint Detection

Changsheng Lu, Zheyuan Liu, Piotr Koniusz

ECCV 2024
5
citations
#79

Building Variable-Sized Models via Learngene Pool

Boyu Shi, Shiyu Xia, Xu Yang et al.

AAAI 2024arXiv:2312.05743
stitchable neural networkslearngene frameworkknowledge distillationvariable-sized models+4
5
citations
#80

Scaling Few-Shot Learning for the Open World

Zhipeng Lin, Wenjing Yang, Haotian Wang et al.

AAAI 2024
4
citations
#81

How Far Are We from True Unlearnability?

Kai Ye, Liangcai Su, Chenxiong Qian

ICLR 2025arXiv:2509.08058
unlearnable examplesdata poisoningloss landscape analysismulti-task learning+4
4
citations
#82

One-shot Active Learning Based on Lewis Weight Sampling for Multiple Deep Models

Sheng-Jun Huang, Yi Li, Yiming Sun et al.

ICLR 2024
4
citations
#83

Multiplane Prior Guided Few-Shot Aerial Scene Rendering

Zihan Gao, Licheng Jiao, Lingling Li et al.

CVPR 2024
4
citations
#84

Reconstruction Target Matters in Masked Image Modeling for Cross-Domain Few-Shot Learning

Ran Ma, Yixiong Zou, Yuhua Li et al.

AAAI 2025
3
citations
#85

UniFS: Universal Few-shot Instance Perception with Point Representations

Sheng Jin, Ruijie Yao, Lumin Xu et al.

ECCV 2024
3
citations
#86

VQToken: Neural Discrete Token Representation Learning for Extreme Token Reduction in Video Large Language Models

Haichao Zhang, Yun Fu

NeurIPS 2025arXiv:2503.16980
token reductionvector quantizationvideo representation learningvideo large language models+4
3
citations
#87

Predicting the Susceptibility of Examples to Catastrophic Forgetting

Guy Hacohen, Tinne Tuytelaars

ICML 2025
3
citations
#88

Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis

Chen Zhao, Xuan Wang, Tong Zhang et al.

ICCV 2025arXiv:2411.00144
3d gaussian splattingnovel view synthesisfew-shot learningself-ensembling+3
3
citations
#89

A3: Few-shot Prompt Learning of Unlearnable Examples with Cross-Modal Adversarial Feature Alignment

Xuan Wang, Xitong Gao, Dongping Liao et al.

CVPR 2025
3
citations
#90

Provably Improving Generalization of Few-shot models with Synthetic Data

Lan-Cuong Nguyen, Quan Nguyen-Tri, Bang Khanh et al.

ICML 2025
3
citations
#91

TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection

Yoon Gyo Jung, Jaewoo Park, Jaeho Yoon et al.

CVPR 2025
3
citations
#92

DiffCLIP: Few-shot Language-driven Multimodal Classifier

Jiaqing Zhang, Mingxiang Cao, Xue Yang et al.

AAAI 2025
2
citations
#93

Prototype antithesis for biological few-shot class-incremental learning

Binghao Liu, Han Yang, Fang Wan et al.

ICLR 2025
2
citations
#94

AmorLIP: Efficient Language-Image Pretraining via Amortization

Haotian Sun, Yitong Li, Yuchen Zhuang et al.

NeurIPS 2025arXiv:2505.18983
contrastive language-image pretrainingzero-shot learningamortized optimizationenergy-based models+4
2
citations
#95

Object-level Correlation for Few-Shot Segmentation

chunlin wen, Yu Zhang, Jie Fan et al.

ICCV 2025arXiv:2509.07917
few-shot segmentationsemantic segmentationobject-level correlationsupport target object+3
2
citations
#96

Tripartite Weight-Space Ensemble for Few-Shot Class-Incremental Learning

Juntae Lee, Munawar Hayat, Sungrack Yun

CVPR 2025
2
citations
#97

VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning

Wenhao Li, Qiangchang Wang, Xianjing Meng et al.

NeurIPS 2025
2
citations
#98

Learnable Feature Patches and Vectors for Boosting Low-light Image Enhancement without External Knowledge

Xiaogang Xu, Jiafei Wu, Qingsen Yan et al.

ICCV 2025
2
citations
#99

Do ImageNet-trained Models Learn Shortcuts? The Impact of Frequency Shortcuts on Generalization

Shunxin Wang, Raymond Veldhuis, Nicola Strisciuglio

CVPR 2025arXiv:2503.03519
frequency shortcutsmodel generalizationout-of-distribution evaluationtexture bias+4
2
citations
#100

Few-shot Personalized Scanpath Prediction

Ruoyu Xue, Jingyi Xu, Sounak Mondal et al.

CVPR 2025
2
citations