Frame Context Packing and Drift Prevention in Next-Frame-Prediction Video Diffusion Models

56citations
arXiv:2504.12626
56
Citations
5
Authors
2
Data Points

Abstract

We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. FramePack compresses input frame contexts with frame-wise importance so that more frames can be encoded within a fixed context length, with more important frames having longer contexts. The frame importance can be measured using time proximity, feature similarity, or hybrid metrics. The packing method allows for inference with thousands of frames and training with relatively large batch sizes. We also present drift prevention methods to address observation bias (error accumulation), including early-established endpoints, adjusted sampling orders, and discrete history representation. Ablation studies validate the effectiveness of the anti-drifting methods in both single-directional video streaming and bi-directional video generation. Finally, we show that existing video diffusion models can be finetuned with FramePack, and analyze the differences between different packing schedules.

Citation History

Jan 25, 2026
55
Jan 31, 2026
56+1