Poster "neural operators" Papers

16 papers found

Discretization-invariance? On the Discretization Mismatch Errors in Neural Operators

Wenhan Gao, Ruichen Xu, Yuefan Deng et al.

ICLR 2025poster
18
citations

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NeurIPS 2025posterarXiv:2510.16675
1
citations

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025posterarXiv:2410.02151
4
citations

S-Crescendo: A Nested Transformer Weaving Framework for Scalable Nonlinear System in S-Domain Representation

Junlang Huang, Chen Hao, Li Luo et al.

NeurIPS 2025posterarXiv:2505.11843

Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations

Abdolmehdi Behroozi, Chaopeng Shen, Daniel Kifer

ICLR 2025posterarXiv:2505.08740
5
citations

Solving Differential Equations with Constrained Learning

Viggo Moro, Luiz Chamon

ICLR 2025posterarXiv:2410.22796
1
citations

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NeurIPS 2025poster

Zero-shot Imputation with Foundation Inference Models for Dynamical Systems

Patrick Seifner, Kostadin Cvejoski, Antonia Körner et al.

ICLR 2025posterarXiv:2402.07594
9
citations

Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch, Mike Yan Michelis, Emmanuel de Bézenac et al.

ICML 2024posterarXiv:2305.19663

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

Zhongkai Hao, Chang Su, LIU SONGMING et al.

ICML 2024posterarXiv:2403.03542

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving

Alexander Rudikov, Fanaskov Vladimir, Ekaterina Muravleva et al.

ICML 2024posterarXiv:2402.05598

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev et al.

ICML 2024posterarXiv:2402.16845

Positional Knowledge is All You Need: Position-induced Transformer (PiT) for Operator Learning

Junfeng CHEN, Kailiang Wu

ICML 2024posterarXiv:2405.09285

Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations

Ze Cheng, Zhongkai Hao, Wang Xiaoqiang et al.

ICML 2024posterarXiv:2405.17509

Towards General Neural Surrogate Solvers with Specialized Neural Accelerators

Chenkai Mao, Robert Lupoiu, Tianxiang Dai et al.

ICML 2024posterarXiv:2405.02351

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024poster