"neural operators" Papers

18 papers found

Discretization-invariance? On the Discretization Mismatch Errors in Neural Operators

Wenhan Gao, Ruichen Xu, Yuefan Deng et al.

ICLR 2025poster
18
citations

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NeurIPS 2025posterarXiv:2510.16675
1
citations

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025posterarXiv:2410.02151
4
citations

S-Crescendo: A Nested Transformer Weaving Framework for Scalable Nonlinear System in S-Domain Representation

Junlang Huang, Chen Hao, Li Luo et al.

NeurIPS 2025posterarXiv:2505.11843

Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations

Abdolmehdi Behroozi, Chaopeng Shen, Daniel Kifer

ICLR 2025posterarXiv:2505.08740
5
citations

Solving Differential Equations with Constrained Learning

Viggo Moro, Luiz Chamon

ICLR 2025posterarXiv:2410.22796
1
citations

Stochastic Process Learning via Operator Flow Matching

Yaozhong Shi, Zachary Ross, Domniki Asimaki et al.

NeurIPS 2025spotlightarXiv:2501.04126
5
citations

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NeurIPS 2025poster

Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch, Mike Yan Michelis, Emmanuel de Bézenac et al.

ICML 2024posterarXiv:2305.19663

DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

Zhongkai Hao, Chang Su, LIU SONGMING et al.

ICML 2024poster

Harnessing the Power of Neural Operators with Automatically Encoded Conservation Laws

Ning Liu, Yiming Fan, Xianyi Zeng et al.

ICML 2024spotlightarXiv:2312.11176

Improved Operator Learning by Orthogonal Attention

Zipeng Xiao, Zhongkai Hao, Bokai Lin et al.

ICML 2024spotlight

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving

Alexander Rudikov, Fanaskov Vladimir, Ekaterina Muravleva et al.

ICML 2024poster

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev et al.

ICML 2024posterarXiv:2402.16845

Positional Knowledge is All You Need: Position-induced Transformer (PiT) for Operator Learning

Junfeng CHEN, Kailiang Wu

ICML 2024posterarXiv:2405.09285

Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations

Ze Cheng, Zhongkai Hao, Wang Xiaoqiang et al.

ICML 2024poster

Towards General Neural Surrogate Solvers with Specialized Neural Accelerators

Chenkai Mao, Robert Lupoiu, Tianxiang Dai et al.

ICML 2024posterarXiv:2405.02351

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024poster