2024 "gaussian processes" Papers

12 papers found

Amortized Variational Deep Kernel Learning

Alan Matias, César Lincoln Mattos, Joao Paulo Gomes et al.

ICML 2024poster

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen et al.

ICML 2024posterarXiv:2406.10775

BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

Shikai Fang, Qingsong Wen, Yingtao Luo et al.

ICML 2024oralarXiv:2308.14906

Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing

Lokesh Nagalapatti, Akshay Iyer, Abir De et al.

AAAI 2024paperarXiv:2401.15447
12
citations

Critical feature learning in deep neural networks

Kirsten Fischer, Javed Lindner, David Dahmen et al.

ICML 2024posterarXiv:2405.10761

Domain Invariant Learning for Gaussian Processes and Bayesian Exploration

Xilong Zhao, Siyuan Bian, Yaoyun Zhang et al.

AAAI 2024paperarXiv:2312.11318
2
citations

Gaussian Processes on Cellular Complexes

Mathieu Alain, So Takao, Brooks Paige et al.

ICML 2024posterarXiv:2311.01198

Gaussian Process Neural Additive Models

Wei Zhang, Brian Barr, John Paisley

AAAI 2024paperarXiv:2402.12518
11
citations

Latent variable model for high-dimensional point process with structured missingness

Maksim Sinelnikov, Manuel Haussmann, Harri Lähdesmäki

ICML 2024posterarXiv:2402.05758

Probabilistic Subgoal Representations for Hierarchical Reinforcement Learning

Vivienne Wang, Tinghuai Wang, wenyan yang et al.

ICML 2024posterarXiv:2406.16707

Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Yingyi Chen, Qinghua Tao, Francesco Tonin et al.

ICML 2024posterarXiv:2402.01476

Variational Linearized Laplace Approximation for Bayesian Deep Learning

Luis A. Ortega, Simon Rodriguez Santana, Daniel Hernández-Lobato

ICML 2024posterarXiv:2302.12565