"gaussian processes" Papers

23 papers found

Boundary constrained Gaussian processes for robust physics-informed machine learning of linear partial differential equations

David Dalton, Alan Lazarus, Hao Gao et al.

ICLR 2025poster

Fairness-aware Bayes Optimal Functional Classification

Xiaoyu Hu, Gengyu Xue, Zhenhua Lin et al.

NeurIPS 2025posterarXiv:2505.09471

Gaussian Processes for Shuffled Regression

Masahiro Kohjima

NeurIPS 2025poster

Identifiability for Gaussian Processes with Holomorphic Kernels

Ameer Qaqish, Didong Li

ICLR 2025poster

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NeurIPS 2025posterarXiv:2510.16675
1
citations

Informed Initialization for Bayesian Optimization and Active Learning

Carl Hvarfner, David Eriksson, Eytan Bakshy et al.

NeurIPS 2025posterarXiv:2510.23681

No-Regret Thompson Sampling for Finite-Horizon Markov Decision Processes with Gaussian Processes

Jasmine Bayrooti, Sattar Vakili, Amanda Prorok et al.

NeurIPS 2025oralarXiv:2510.20725

Policy Gradient with Kernel Quadrature

Tetsuro Morimura, Satoshi Hayakawa

ICLR 2025posterarXiv:2310.14768
1
citations

Quantitative convergence of trained neural networks to Gaussian processes

Andrea Agazzi, Eloy Mosig García, Dario Trevisan

NeurIPS 2025poster

Residual Deep Gaussian Processes on Manifolds

Kacper Wyrwal, Andreas Krause, Viacheslav (Slava) Borovitskiy

ICLR 2025posterarXiv:2411.00161
2
citations

Robust and Computation-Aware Gaussian Processes

NeurIPS 2025arXiv:2505.21133

Amortized Variational Deep Kernel Learning

Alan Matias, César Lincoln Mattos, Joao Paulo Gomes et al.

ICML 2024poster

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen et al.

ICML 2024poster

BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

Shikai Fang, Qingsong Wen, Yingtao Luo et al.

ICML 2024oral

Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing

Lokesh Nagalapatti, Akshay Iyer, Abir De et al.

AAAI 2024paperarXiv:2401.15447
12
citations

Critical feature learning in deep neural networks

Kirsten Fischer, Javed Lindner, David Dahmen et al.

ICML 2024posterarXiv:2405.10761

Domain Invariant Learning for Gaussian Processes and Bayesian Exploration

Xilong Zhao, Siyuan Bian, Yaoyun Zhang et al.

AAAI 2024paperarXiv:2312.11318
2
citations

Gaussian Processes on Cellular Complexes

Mathieu Alain, So Takao, Brooks Paige et al.

ICML 2024poster

Gaussian Process Neural Additive Models

Wei Zhang, Brian Barr, John Paisley

AAAI 2024paperarXiv:2402.12518
11
citations

Latent variable model for high-dimensional point process with structured missingness

Maksim Sinelnikov, Manuel Haussmann, Harri Lähdesmäki

ICML 2024poster

Probabilistic Subgoal Representations for Hierarchical Reinforcement Learning

Vivienne Wang, Tinghuai Wang, wenyan yang et al.

ICML 2024poster

Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Yingyi Chen, Qinghua Tao, Francesco Tonin et al.

ICML 2024poster

Variational Linearized Laplace Approximation for Bayesian Deep Learning

Luis A. Ortega, Simon Rodriguez Santana, Daniel Hernández-Lobato

ICML 2024poster