"uncertainty quantification" Papers

111 papers found • Page 1 of 3

A Generic Framework for Conformal Fairness

Aditya Vadlamani, Anutam Srinivasan, Pranav Maneriker et al.

ICLR 2025arXiv:2505.16115
5
citations

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

Da Long, Zhitong Xu, Guang Yang et al.

ICML 2025arXiv:2410.13794
2
citations

Architectural and Inferential Inductive Biases for Exchangeable Sequence Modeling

Daksh Mittal, Leon Li, Thomson Yen et al.

NEURIPS 2025arXiv:2503.01215
1
citations

Bayesian Concept Bottleneck Models with LLM Priors

Jean Feng, Avni Kothari, Lucas Zier et al.

NEURIPS 2025arXiv:2410.15555
10
citations

Bridging the Gap between Variational Inference and Stochastic Gradient MCMC in Function Space

Mengjing Wu, Junyu Xuan, Jie Lu

ICLR 2025

CBMA: Improving Conformal Prediction through Bayesian Model Averaging

Pankaj Bhagwat, Linglong Kong, Bei Jiang

ICLR 2025arXiv:2511.16924
2
citations

Cocoon: Robust Multi-Modal Perception with Uncertainty-Aware Sensor Fusion

Minkyoung Cho, Yulong Cao, Jiachen Sun et al.

ICLR 2025arXiv:2410.12592
6
citations

Conformal Information Pursuit for Interactively Guiding Large Language Models

Kwan Ho Ryan Chan, Yuyan Ge, Edgar Dobriban et al.

NEURIPS 2025arXiv:2507.03279
3
citations

Conformalized Interval Arithmetic with Symmetric Calibration

Rui Luo, Zhixin Zhou

AAAI 2025paperarXiv:2408.10939
11
citations

Conformal Linguistic Calibration: Trading-off between Factuality and Specificity

Zhengping Jiang, Anqi Liu, Ben Van Durme

NEURIPS 2025arXiv:2502.19110
7
citations

Conformal Prediction Beyond the Horizon: Distribution-Free Inference for Policy Evaluation

Feichen Gan, Lu Youcun, Yingying Zhang et al.

NEURIPS 2025oralarXiv:2510.26026

Conformal Prediction for Time-series Forecasting with Change Points

Sophia Sun, Rose Yu

NEURIPS 2025arXiv:2509.02844

Conformal Prediction in The Loop: A Feedback-Based Uncertainty Model for Trajectory Optimization

Han Wang, Chao Ning

NEURIPS 2025arXiv:2510.16376

Conformal Prediction Sets Can Cause Disparate Impact

Jesse Cresswell, Bhargava Kumar, Yi Sui et al.

ICLR 2025arXiv:2410.01888
8
citations

Contextual Thompson Sampling via Generation of Missing Data

Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.

NEURIPS 2025arXiv:2502.07064
2
citations

CUQDS: Conformal Uncertainty Quantification Under Distribution Shift for Trajectory Prediction

Huiqun Huang, Sihong He, Fei Miao

AAAI 2025paperarXiv:2406.12100
2
citations

Debiasing Mini-Batch Quadratics for Applications in Deep Learning

Lukas Nicola Tatzel, Bálint Mucsányi, Osane Hackel et al.

ICLR 2025arXiv:2410.14325
2
citations

Diffusion Transformers for Imputation: Statistical Efficiency and Uncertainty Quantification

Zeqi Ye, Minshuo Chen

NEURIPS 2025oralarXiv:2510.02216

Distribution-Free Data Uncertainty for Neural Network Regression

Domokos M. Kelen, Ádám Jung, Péter Kersch et al.

ICLR 2025
3
citations

Enhancing Vision-Language Model Reliability with Uncertainty-Guided Dropout Decoding

Yixiong Fang, Ziran Yang, Zhaorun Chen et al.

NEURIPS 2025arXiv:2412.06474
14
citations

Error-quantified Conformal Inference for Time Series

Junxi Wu, Dongjian Hu, Yajie Bao et al.

ICLR 2025oralarXiv:2502.00818
8
citations

Evidential Knowledge Distillation

Liangyu Xiang, Junyu Gao, Changsheng Xu

ICCV 2025arXiv:2507.18366
1
citations

Exploiting the Asymmetric Uncertainty Structure of Pre-trained VLMs on the Unit Hypersphere

Li Ju, Max Andersson, Stina Fredriksson et al.

NEURIPS 2025arXiv:2505.11029
2
citations

Exploring the Noise Robustness of Online Conformal Prediction

HuaJun Xi, Kangdao Liu, Hao Zeng et al.

NEURIPS 2025arXiv:2501.18363
2
citations

From Risk to Uncertainty: Generating Predictive Uncertainty Measures via Bayesian Estimation

Nikita Kotelevskii, Vladimir Kondratyev, Martin Takáč et al.

ICLR 2025arXiv:2402.10727
17
citations

Fuz-RL: A Fuzzy-Guided Robust Framework for Safe Reinforcement Learning under Uncertainty

Xu Wan, Chao Yang, Cheng Yang et al.

NEURIPS 2025

Gaussian Approximation and Concentration of Constant Learning-Rate Stochastic Gradient Descent

Ziyang Wei, Jiaqi Li, Zhipeng Lou et al.

NEURIPS 2025

General Uncertainty Estimation with Delta Variances

Simon Schmitt, John Shawe-Taylor, Hado van Hasselt

AAAI 2025paperarXiv:2502.14698
2
citations

Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks

Debargha Ganguly, Vikash Singh, Sreehari Sankar et al.

NEURIPS 2025arXiv:2505.20047
5
citations

Handling Missing Responses under Cluster Dependence with Applications to Language Model Evaluation

Zhenghao Zeng, David Arbour, Avi Feller et al.

NEURIPS 2025arXiv:2510.20928

Image Super-Resolution with Guarantees via Conformalized Generative Models

Eduardo Adame, Daniel Csillag, Guilherme Tegoni Goedert

NEURIPS 2025arXiv:2502.09664
1
citations

Improved Sampling Of Diffusion Models In Fluid Dynamics With Tweedie's Formula

Youssef Shehata, Benjamin Holzschuh, Nils Thuerey

ICLR 2025oral
3
citations

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NEURIPS 2025arXiv:2510.16675
1
citations

Knowledge Distillation of Uncertainty using Deep Latent Factor Model

Sehyun Park, Jongjin Lee, Yunseop Shin et al.

NEURIPS 2025arXiv:2510.19290

Learning Normal Flow Directly From Events

Dehao Yuan, Levi Burner, Jiayi Wu et al.

ICCV 2025arXiv:2412.11284
5
citations

Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks

Emanuel Sommer, Jakob Robnik, Giorgi Nozadze et al.

ICLR 2025arXiv:2502.06335
5
citations

Neurosymbolic Diffusion Models

Emile van Krieken, Pasquale Minervini, Edoardo Maria Ponti et al.

NEURIPS 2025arXiv:2505.13138
5
citations

Parametric ρ-Norm Scaling Calibration

Siyuan Zhang, Linbo Xie

AAAI 2025paperarXiv:2412.15301

Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation

Ting Wei, Biao Mei, Junliang Lyu et al.

NEURIPS 2025arXiv:2505.14161
1
citations

POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality

Joey Wilson, Marcelino M. de Almeida, Sachit Mahajan et al.

CVPR 2025arXiv:2503.07819
8
citations

Probabilistic Reasoning with LLMs for Privacy Risk Estimation

Jonathan Zheng, Alan Ritter, Sauvik Das et al.

NEURIPS 2025

ProDAG: Projected Variational Inference for Directed Acyclic Graphs

Ryan Thompson, Edwin Bonilla, Robert Kohn

NEURIPS 2025arXiv:2405.15167

Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning

Yan Scholten, Stephan Günnemann

ICLR 2025arXiv:2410.09878
2
citations

Quantifying and Narrowing the Unknown: Interactive Text-to-Video Retrieval via Uncertainty Minimization

Bingqing Zhang, Zhuo Cao, Heming Du et al.

ICCV 2025arXiv:2507.15504
2
citations

Quantifying Statistical Significance of Deep Nearest Neighbor Anomaly Detection via Selective Inference

Mizuki Niihori, Shuichi Nishino, Teruyuki Katsuoka et al.

NEURIPS 2025arXiv:2502.12978
1
citations

Rethinking Approximate Gaussian Inference in Classification

Bálint Mucsányi, Nathaël Da Costa, Philipp Hennig

NEURIPS 2025arXiv:2502.03366
1
citations

Revisiting Source-Free Domain Adaptation: a New Perspective via Uncertainty Control

Gezheng Xu, Hui GUO, Li Yi et al.

ICLR 2025
5
citations

Solving and Learning Partial Differential Equations with Variational Q-Exponential Processes

Guangting Yu, Shiwei Lan

NEURIPS 2025

Statistical Inference for Gradient Boosting Regression

Haimo Fang, Kevin Tan, Giles Hooker

NEURIPS 2025arXiv:2509.23127
1
citations

THUNDER: Tile-level Histopathology image UNDERstanding benchmark

Pierre Marza, Leo Fillioux, Sofiène Boutaj et al.

NEURIPS 2025spotlightarXiv:2507.07860
3
citations
PreviousNext