All Papers

34,180 papers found • Page 669 of 684

Uncertainty Quantification via Stable Distribution Propagation

Felix Petersen, Aashwin Mishra, Hilde Kuehne et al.

ICLR 2024posterarXiv:2402.08324

Uncertainty Regularized Evidential Regression

Kai Ye, Tiejin Chen, Hua Wei et al.

AAAI 2024paperarXiv:2401.01484
11
citations

Uncertainty Visualization via Low-Dimensional Posterior Projections

Omer Yair, Tomer Michaeli, Elias Nehme

CVPR 2024posterarXiv:2312.07804
3
citations

Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning

James Chapman, Lennie Wells, Ana Lawry Aguila

ICLR 2024posterarXiv:2310.01012

Uncovering and Mitigating the Hidden Chasm: A Study on the Text-Text Domain Gap in Euphemism Identification

AAAI 2024paper

Uncovering What Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly

Hang Du, Sicheng Zhang, Binzhu Xie et al.

CVPR 2024posterarXiv:2405.00181

Underspecification in Language Modeling Tasks: A Causality-Informed Study of Gendered Pronoun Resolution

Emily McMilin

AAAI 2024paperarXiv:2210.00131

Understanding Adam Optimizer via Online Learning of Updates: Adam is FTRL in Disguise

Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook et al.

ICML 2024posterarXiv:2402.01567

Understanding Addition in Transformers

Philip Quirke, Fazl Barez

ICLR 2024posterarXiv:2310.13121

Understanding and Diagnosing Deep Reinforcement Learning

Ezgi Korkmaz

ICML 2024posterarXiv:2406.16979

Understanding and Improving Optimization in Predictive Coding Networks

Nicholas Alonso, Jeffrey Krichmar, Emre Neftci

AAAI 2024paperarXiv:2305.13562
10
citations

Understanding and Improving Source-free Domain Adaptation from a Theoretical Perspective

Yu Mitsuzumi, Akisato Kimura, Hisashi Kashima

CVPR 2024poster

Understanding and Leveraging the Learning Phases of Neural Networks

AAAI 2024paperarXiv:2312.06887

Understanding and Mitigating Human-Labelling Errors in Supervised Contrastive Learning

Zijun Long, Lipeng Zhuang, George W Killick et al.

ECCV 2024posterarXiv:2403.06289

Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks

Hao Chen, Jindong Wang, Ankit Parag Shah et al.

ICLR 2024spotlightarXiv:2309.17002

Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression

Runtian Zhai, Bingbin Liu, Andrej Risteski et al.

ICLR 2024spotlightarXiv:2306.00788
17
citations

Understanding Catastrophic Forgetting in Language Models via Implicit Inference

Suhas Kotha, Jacob Springer, Aditi Raghunathan

ICLR 2024posterarXiv:2309.10105
103
citations

Understanding Certified Training with Interval Bound Propagation

Yuhao Mao, Mark N Müller, Marc Fischer et al.

ICLR 2024posterarXiv:2306.10426
22
citations

Understanding Convergence and Generalization in Federated Learning through Feature Learning Theory

Wei Huang, Ye Shi, Zhongyi Cai et al.

ICLR 2024poster

Understanding Diffusion Models by Feynman's Path Integral

Yuji Hirono, Akinori Tanaka, Kenji Fukushima

ICML 2024posterarXiv:2403.11262

Understanding Distributed Representations of Concepts in Deep Neural Networks without Supervision

Wonjoon Chang, Dahee Kwon, Jaesik Choi

AAAI 2024paperarXiv:2312.17285

Understanding Domain Generalization: A Noise Robustness Perspective

Rui Qiao, Bryan Kian Hsiang Low

ICLR 2024posterarXiv:2401.14846

Understanding Expressivity of GNN in Rule Learning

Haiquan Qiu, Yongqi Zhang, Yong Li et al.

ICLR 2024posterarXiv:2303.12306
9
citations

Understanding Finetuning for Factual Knowledge Extraction

Gaurav Ghosal, Tatsunori Hashimoto, Aditi Raghunathan

ICML 2024posterarXiv:2406.14785

Understanding Forgetting in Continual Learning with Linear Regression

Meng Ding, Kaiyi Ji, Di Wang et al.

ICML 2024posterarXiv:2405.17583

Understanding Heterophily for Graph Neural Networks

Junfu Wang, Yuanfang Guo, Liang Yang et al.

ICML 2024posterarXiv:2401.09125

Understanding In-Context Learning from Repetitions

Jianhao (Elliott) Yan, Jin Xu, Chiyu Song et al.

ICLR 2024posterarXiv:2310.00297
29
citations

Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions

Satwik Bhattamishra, Arkil Patel, Phil Blunsom et al.

ICLR 2024posterarXiv:2310.03016

Understanding Inter-Concept Relationships in Concept-Based Models

Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik

ICML 2024posterarXiv:2405.18217
10
citations

Understanding MLP-Mixer as a wide and sparse MLP

Tomohiro Hayase, Ryo Karakida

ICML 2024posterarXiv:2306.01470

Understanding Multi-compositional learning in Vision and Language models via Category Theory

Sotirios Panagiotis Takis Chytas, Hyunwoo J. Kim, Vikas Singh

ECCV 2024poster
5
citations

Understanding Physical Dynamics with Counterfactual World Modeling

Rahul Mysore Venkatesh, Honglin Chen, Kevin Feigelis et al.

ECCV 2024posterarXiv:2312.06721
7
citations

Understanding prompt engineering may not require rethinking generalization

Victor Akinwande, Yiding Jiang, Dylan Sam et al.

ICLR 2024posterarXiv:2310.03957
10
citations

Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang et al.

ICML 2024posterarXiv:2402.03268

Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation

Noel Loo, Ramin Hasani, Mathias Lechner et al.

ICLR 2024posterarXiv:2302.01428

Understanding Retrieval-Augmented Task Adaptation for Vision-Language Models

Yifei Ming, Sharon Li

ICML 2024posterarXiv:2405.01468

Understanding Server-Assisted Federated Learning in the Presence of Incomplete Client Participation

Haibo Yang, Peiwen Qiu, Prashant Khanduri et al.

ICML 2024posterarXiv:2405.02745

Understanding Stochastic Natural Gradient Variational Inference

Kaiwen Wu, Jacob Gardner

ICML 2024posterarXiv:2406.01870

Understanding the Effects of Iterative Prompting on Truthfulness

Satyapriya Krishna, Chirag Agarwal, Himabindu Lakkaraju

ICML 2024posterarXiv:2402.06625

Understanding the Effects of RLHF on LLM Generalisation and Diversity

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis et al.

ICLR 2024posterarXiv:2310.06452
267
citations

Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data

Sai Niranjan Ramachandran, Rudrabha Mukhopadhyay, Madhav Agarwal et al.

AAAI 2024paper

Understanding the Impact of Introducing Constraints at Inference Time on Generalization Error

Masaaki Nishino, Kengo Nakamura, Norihito Yasuda

ICML 2024poster

Understanding the Learning Dynamics of Alignment with Human Feedback

Shawn Im, Sharon Li

ICML 2024posterarXiv:2403.18742

Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods

Avery Ma, Yangchen Pan, Amir-massoud Farahmand

ICLR 2024posterarXiv:2308.06703
8
citations

Understanding the Robustness of Multi-modal Contrastive Learning to Distribution Shift

Yihao Xue, Siddharth Joshi, Dang Nguyen et al.

ICLR 2024posterarXiv:2310.04971
5
citations

Understanding the Robustness of Randomized Feature Defense Against Query-Based Adversarial Attacks

Hung Quang Nguyen, Yingjie Lao, Tung Pham et al.

ICLR 2024posterarXiv:2310.00567
1
citations

Understanding the Role of the Projector in Knowledge Distillation

AAAI 2024paperarXiv:2303.11098

Understanding the Training Speedup from Sampling with Approximate Losses

Rudrajit Das, Xi Chen, Bertram Ieong et al.

ICML 2024posterarXiv:2402.07052

Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP

Zixiang Chen, Yihe Deng, Yuanzhi Li et al.

ICLR 2024posterarXiv:2310.00927

Understanding Unimodal Bias in Multimodal Deep Linear Networks

Yedi Zhang, Peter Latham, Andrew Saxe

ICML 2024posterarXiv:2312.00935