"uncertainty quantification" Papers

113 papers found • Page 3 of 3

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla et al.

ICML 2024arXiv:2402.00809
60
citations

Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise

Thomas Pouplin, Alan Jeffares, Nabeel Seedat et al.

ICML 2024arXiv:2406.03258
7
citations

Second-Order Uncertainty Quantification: A Distance-Based Approach

Yusuf Sale, Viktor Bengs, Michele Caprio et al.

ICML 2024spotlightarXiv:2312.00995
33
citations

Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction

Jeffrey Wen, Rizwan Ahmad, Phillip Schniter

ECCV 2024arXiv:2405.18527
5
citations

T-Cal: An Optimal Test for the Calibration of Predictive Models

Donghwan Lee, Xinmeng Huang, Hamed Hassani et al.

ICML 2024arXiv:2203.01850
26
citations

The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks

Ziquan Liu, Yufei Cui, Yan Yan et al.

ICML 2024arXiv:2405.08886
9
citations

TIC-TAC: A Framework For Improved Covariance Estimation In Deep Heteroscedastic Regression

Megh Shukla, Mathieu Salzmann, Alexandre Alahi

ICML 2024arXiv:2310.18953
5
citations

Towards Modeling Uncertainties of Self-explaining Neural Networks via Conformal Prediction

Wei Qian, Chenxu Zhao, Yangyi Li et al.

AAAI 2024paperarXiv:2401.01549
10
citations

Uncertainty Quantification in Heterogeneous Treatment Effect Estimation with Gaussian-Process-Based Partially Linear Model

Shunsuke Horii, Yoichi Chikahara

AAAI 2024paperarXiv:2312.10435
6
citations

Uncertainty Regularized Evidential Regression

Kai Ye, Tiejin Chen, Hua Wei et al.

AAAI 2024paperarXiv:2401.01484
11
citations

Using AI Uncertainty Quantification to Improve Human Decision-Making

Laura Marusich, Jonathan Bakdash, Yan Zhou et al.

ICML 2024oralarXiv:2309.10852
12
citations

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024

Winner-takes-all learners are geometry-aware conditional density estimators

Victor Letzelter, David Perera, Cédric Rommel et al.

ICML 2024arXiv:2406.04706
6
citations