Poster "uncertainty quantification" Papers

87 papers found • Page 2 of 2

Accelerating Convergence in Bayesian Few-Shot Classification

Tianjun Ke, Haoqun Cao, Feng Zhou

ICML 2024arXiv:2405.01507
2
citations

Active Statistical Inference

Tijana Zrnic, Emmanuel J Candes

ICML 2024arXiv:2403.03208
31
citations

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann et al.

ECCV 2024arXiv:2403.07263
19
citations

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen et al.

ICML 2024arXiv:2406.10775
3
citations

A Unified View of FANOVA: A Comprehensive Bayesian Framework for Component Selection and Estimation

Yosra MARNISSI, Maxime Leiber

ICML 2024

Bayesian Evidential Deep Learning for Online Action Detection

Hongji Guo, Hanjing Wang, Qiang Ji

ECCV 2024
3
citations

Bayesian Knowledge Distillation: A Bayesian Perspective of Distillation with Uncertainty Quantification

Luyang Fang, Yongkai Chen, Wenxuan Zhong et al.

ICML 2024

Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning

Idan Achituve, Idit Diamant, Arnon Netzer et al.

ICML 2024arXiv:2402.04005
13
citations

Certifiably Byzantine-Robust Federated Conformal Prediction

Mintong Kang, Zhen Lin, Jimeng Sun et al.

ICML 2024arXiv:2406.01960
5
citations

Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference

Luca Masserano, Alexander Shen, Michele Doro et al.

ICML 2024arXiv:2402.05330

Conformal Prediction Sets Improve Human Decision Making

Jesse Cresswell, yi sui, Bhargava Kumar et al.

ICML 2024arXiv:2401.13744
31
citations

Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)

Drew Prinster, Samuel Stanton, Anqi Liu et al.

ICML 2024arXiv:2405.06627
19
citations

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou et al.

ICML 2024arXiv:2402.01484

Data Poisoning Attacks against Conformal Prediction

Yangyi Li, Aobo Chen, Wei Qian et al.

ICML 2024

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Bairu Hou, Yujian Liu, Kaizhi Qian et al.

ICML 2024arXiv:2311.08718
101
citations

Epistemic Uncertainty Quantification For Pre-Trained Neural Networks

Hanjing Wang, Qiang Ji

CVPR 2024arXiv:2404.10124
7
citations

Evidential Active Recognition: Intelligent and Prudent Open-World Embodied Perception

Lei Fan, Mingfu Liang, Yunxuan Li et al.

CVPR 2024arXiv:2311.13793
16
citations

Improving Neural Additive Models with Bayesian Principles

Kouroche Bouchiat, Alexander Immer, Hugo Yèche et al.

ICML 2024arXiv:2305.16905
13
citations

Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing

Gabriel Arpino, Xiaoqi Liu, Ramji Venkataramanan

ICML 2024arXiv:2404.07864

Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?

Mira Juergens, Nis Meinert, Viktor Bengs et al.

ICML 2024

Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective

Fabian Falck, Ziyu Wang, Christopher Holmes

ICML 2024arXiv:2406.00793
42
citations

Language Models with Conformal Factuality Guarantees

Christopher Mohri, Tatsunori Hashimoto

ICML 2024arXiv:2402.10978
85
citations

Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models

Gianni Franchi, Olivier Laurent, Maxence Leguéry et al.

CVPR 2024arXiv:2312.15297
16
citations

Multi-Source Conformal Inference Under Distribution Shift

Yi Liu, Alexander Levis, Sharon-Lise Normand et al.

ICML 2024arXiv:2405.09331
18
citations

Not all distributional shifts are equal: Fine-grained robust conformal inference

Jiahao Ai, Zhimei Ren

ICML 2024arXiv:2402.13042
12
citations

Online Algorithms with Uncertainty-Quantified Predictions

Bo Sun, Jerry Huang, Nicolas Christianson et al.

ICML 2024arXiv:2310.11558
12
citations

On the Independence Assumption in Neurosymbolic Learning

Emile van Krieken, Pasquale Minervini, Edoardo Ponti et al.

ICML 2024arXiv:2404.08458
18
citations

Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho, Minju Jo, Haksoo Lim et al.

ICML 2024arXiv:2408.09446
44
citations

Partially Stochastic Infinitely Deep Bayesian Neural Networks

Sergio Calvo Ordoñez, Matthieu Meunier, Francesco Piatti et al.

ICML 2024

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla et al.

ICML 2024arXiv:2402.00809
60
citations

Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise

Thomas Pouplin, Alan Jeffares, Nabeel Seedat et al.

ICML 2024arXiv:2406.03258
7
citations

Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction

Jeffrey Wen, Rizwan Ahmad, Phillip Schniter

ECCV 2024arXiv:2405.18527
5
citations

T-Cal: An Optimal Test for the Calibration of Predictive Models

Donghwan Lee, Xinmeng Huang, Hamed Hassani et al.

ICML 2024arXiv:2203.01850
26
citations

The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks

Ziquan Liu, Yufei Cui, Yan Yan et al.

ICML 2024arXiv:2405.08886
9
citations

TIC-TAC: A Framework For Improved Covariance Estimation In Deep Heteroscedastic Regression

Megh Shukla, Mathieu Salzmann, Alexandre Alahi

ICML 2024arXiv:2310.18953
5
citations

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024

Winner-takes-all learners are geometry-aware conditional density estimators

Victor Letzelter, David Perera, Cédric Rommel et al.

ICML 2024arXiv:2406.04706
6
citations