"uncertainty quantification" Papers

113 papers found • Page 2 of 3

THUNDER: Tile-level Histopathology image UNDERstanding benchmark

Pierre Marza, Leo Fillioux, Sofiène Boutaj et al.

NEURIPS 2025spotlightarXiv:2507.07860
3
citations

Topology-Aware Conformal Prediction for Stream Networks

Jifan Zhang, Fangxin Wang, Zihe Song et al.

NEURIPS 2025oralarXiv:2503.04981
3
citations

Torch-Uncertainty: Deep Learning Uncertainty Quantification

Adrien Lafage, Olivier Laurent, Firas Gabetni et al.

NEURIPS 2025spotlight

Towards Trustworthy Knowledge Graph Reasoning: An Uncertainty Aware Perspective

Bo Ni, Yu Wang, Lu Cheng et al.

AAAI 2025paperarXiv:2410.08985
12
citations

Towards Understanding and Quantifying Uncertainty for Text-to-Image Generation

Gianni Franchi, Nacim Belkhir, Dat NGUYEN et al.

CVPR 2025arXiv:2412.03178
5
citations

Transformers for Mixed-type Event Sequences

Felix Draxler, Yang Meng, Kai Nelson et al.

NEURIPS 2025oral
2
citations

Uncertainty Estimation by Flexible Evidential Deep Learning

Taeseong Yoon, Heeyoung Kim

NEURIPS 2025arXiv:2510.18322

Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations

Richard Bergna, Sergio Calvo Ordoñez, Felix Opolka et al.

ICLR 2025arXiv:2408.16115
8
citations

Uncertainty Quantification with the Empirical Neural Tangent Kernel

Joseph Wilson, Chris van der Heide, Liam Hodgkinson et al.

NEURIPS 2025arXiv:2502.02870
7
citations

Valid Conformal Prediction for Dynamic GNNs

Ed Davis, Ian Gallagher, Daniel Lawson et al.

ICLR 2025arXiv:2405.19230
7
citations

Variational Polya Tree

Lu Xu, Tsai Hor Chan, Lequan Yu et al.

NEURIPS 2025arXiv:2510.22651

ViLU: Learning Vision-Language Uncertainties for Failure Prediction

Marc Lafon, Yannis Karmim, Julio Silva-Rodríguez et al.

ICCV 2025arXiv:2507.07620
2
citations

A Bayesian Approach to Online Planning

Nir Greshler, David Ben Eli, Carmel Rabinovitz et al.

ICML 2024arXiv:2406.02103
1
citations

Accelerating Convergence in Bayesian Few-Shot Classification

Tianjun Ke, Haoqun Cao, Feng Zhou

ICML 2024arXiv:2405.01507
2
citations

Active Statistical Inference

Tijana Zrnic, Emmanuel J Candes

ICML 2024arXiv:2403.03208
31
citations

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann et al.

ECCV 2024arXiv:2403.07263
19
citations

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen et al.

ICML 2024arXiv:2406.10775
3
citations

A Unified View of FANOVA: A Comprehensive Bayesian Framework for Component Selection and Estimation

Yosra MARNISSI, Maxime Leiber

ICML 2024

Bayesian Evidential Deep Learning for Online Action Detection

Hongji Guo, Hanjing Wang, Qiang Ji

ECCV 2024
3
citations

Bayesian Knowledge Distillation: A Bayesian Perspective of Distillation with Uncertainty Quantification

Luyang Fang, Yongkai Chen, Wenxuan Zhong et al.

ICML 2024

Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning

Idan Achituve, Idit Diamant, Arnon Netzer et al.

ICML 2024arXiv:2402.04005
13
citations

BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

Shikai Fang, Qingsong Wen, Yingtao Luo et al.

ICML 2024oralarXiv:2308.14906
14
citations

Beyond the Norms: Detecting Prediction Errors in Regression Models

Andres Altieri, Marco Romanelli, Georg Pichler et al.

ICML 2024spotlightarXiv:2406.06968
1
citations

Certifiably Byzantine-Robust Federated Conformal Prediction

Mintong Kang, Zhen Lin, Jimeng Sun et al.

ICML 2024arXiv:2406.01960
5
citations

Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference

Luca Masserano, Alexander Shen, Michele Doro et al.

ICML 2024arXiv:2402.05330

Conformal prediction for multi-dimensional time series by ellipsoidal sets

Chen Xu, Hanyang Jiang, Yao Xie

ICML 2024spotlightarXiv:2403.03850
39
citations

Conformal Prediction Sets Improve Human Decision Making

Jesse Cresswell, yi sui, Bhargava Kumar et al.

ICML 2024arXiv:2401.13744
31
citations

Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)

Drew Prinster, Samuel Stanton, Anqi Liu et al.

ICML 2024arXiv:2405.06627
19
citations

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou et al.

ICML 2024arXiv:2402.01484

Data Poisoning Attacks against Conformal Prediction

Yangyi Li, Aobo Chen, Wei Qian et al.

ICML 2024

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Bairu Hou, Yujian Liu, Kaizhi Qian et al.

ICML 2024arXiv:2311.08718
101
citations

Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression

Xuanlong Yu, Gianni Franchi, Jindong Gu et al.

AAAI 2024paperarXiv:2308.09065
8
citations

E2E-AT: A Unified Framework for Tackling Uncertainty in Task-Aware End-to-End Learning

8445 Wangkun Xu, Jianhong Wang, Fei Teng

AAAI 2024paperarXiv:2312.10587
5
citations

Epistemic Uncertainty Quantification For Pre-Trained Neural Networks

Hanjing Wang, Qiang Ji

CVPR 2024arXiv:2404.10124
7
citations

Evidential Active Recognition: Intelligent and Prudent Open-World Embodied Perception

Lei Fan, Mingfu Liang, Yunxuan Li et al.

CVPR 2024arXiv:2311.13793
16
citations

Improving Neural Additive Models with Bayesian Principles

Kouroche Bouchiat, Alexander Immer, Hugo Yèche et al.

ICML 2024arXiv:2305.16905
13
citations

Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing

Gabriel Arpino, Xiaoqi Liu, Ramji Venkataramanan

ICML 2024arXiv:2404.07864

Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?

Mira Juergens, Nis Meinert, Viktor Bengs et al.

ICML 2024

Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective

Fabian Falck, Ziyu Wang, Christopher Holmes

ICML 2024arXiv:2406.00793
42
citations

Language Models with Conformal Factuality Guarantees

Christopher Mohri, Tatsunori Hashimoto

ICML 2024arXiv:2402.10978
85
citations

Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models

Gianni Franchi, Olivier Laurent, Maxence Leguéry et al.

CVPR 2024arXiv:2312.15297
16
citations

Multi-Source Conformal Inference Under Distribution Shift

Yi Liu, Alexander Levis, Sharon-Lise Normand et al.

ICML 2024arXiv:2405.09331
18
citations

Not all distributional shifts are equal: Fine-grained robust conformal inference

Jiahao Ai, Zhimei Ren

ICML 2024arXiv:2402.13042
12
citations

One Step Closer to Unbiased Aleatoric Uncertainty Estimation

Wang Zhang, Ziwen Martin Ma, Subhro Das et al.

AAAI 2024paperarXiv:2312.10469
12
citations

Online Algorithms with Uncertainty-Quantified Predictions

Bo Sun, Jerry Huang, Nicolas Christianson et al.

ICML 2024arXiv:2310.11558
12
citations

On the Independence Assumption in Neurosymbolic Learning

Emile van Krieken, Pasquale Minervini, Edoardo Ponti et al.

ICML 2024arXiv:2404.08458
18
citations

OVD-Explorer: Optimism Should Not Be the Sole Pursuit of Exploration in Noisy Environments

Jinyi Liu, Zhi Wang, Yan Zheng et al.

AAAI 2024paperarXiv:2312.12145
13
citations

Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho, Minju Jo, Haksoo Lim et al.

ICML 2024arXiv:2408.09446
44
citations

Partially Stochastic Infinitely Deep Bayesian Neural Networks

Sergio Calvo Ordoñez, Matthieu Meunier, Francesco Piatti et al.

ICML 2024

Position: Amazing Things Come From Having Many Good Models

Cynthia Rudin, Chudi Zhong, Lesia Semenova et al.

ICML 2024spotlight