Poster "differential privacy" Papers

76 papers found • Page 2 of 2

How Private are DP-SGD Implementations?

Lynn Chua, Badih Ghazi, Pritish Kamath et al.

ICML 2024arXiv:2403.17673
22
citations

Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy

Wei-Ning Chen, Berivan Isik, Peter Kairouz et al.

ICML 2024arXiv:2405.02341
4
citations

Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization

Badih Ghazi, Pritish Kamath, Ravi Kumar et al.

ICML 2024arXiv:2405.18534
1
citations

Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation

Bochao Liu, Pengju Wang, Shiming Ge

ECCV 2024arXiv:2408.14738
4
citations

Locally Differentially Private Decentralized Stochastic Bilevel Optimization with Guaranteed Convergence Accuracy

Ziqin Chen, Yongqiang Wang

ICML 2024

Making Old Things New: A Unified Algorithm for Differentially Private Clustering

Max Dupre la Tour, Monika Henzinger, David Saulpic

ICML 2024arXiv:2406.11649
4
citations

Mean Estimation in the Add-Remove Model of Differential Privacy

Alex Kulesza, Ananda Suresh, Yuyan Wang

ICML 2024arXiv:2312.06658
10
citations

Nash Incentive-compatible Online Mechanism Learning via Weakly Differentially Private Online Learning

Joon Suk Huh, Kirthevasan Kandasamy

ICML 2024arXiv:2407.04898
2
citations

Neural Collapse meets Differential Privacy: Curious behaviors of NoisyGD with Near-Perfect Representation Learning

Chendi Wang, Yuqing Zhu, Weijie Su et al.

ICML 2024arXiv:2405.08920
8
citations

Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning

Saber Malekmohammadi, Yaoliang Yu, YANG CAO

ICML 2024arXiv:2406.03519
8
citations

Optimal Differentially Private Model Training with Public Data

Andrew Lowy, Zeman Li, Tianjian Huang et al.

ICML 2024arXiv:2306.15056
7
citations

Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining

Florian Tramer, Gautam Kamath, Nicholas Carlini

ICML 2024

Privacy-Preserving Instructions for Aligning Large Language Models

Da Yu, Peter Kairouz, Sewoong Oh et al.

ICML 2024arXiv:2402.13659
36
citations

Private and Federated Stochastic Convex Optimization: Efficient Strategies for Centralized Systems

Roie Reshef, Kfir Levy

ICML 2024arXiv:2407.12396
1
citations

Private Heterogeneous Federated Learning Without a Trusted Server Revisited: Error-Optimal and Communication-Efficient Algorithms for Convex Losses

Changyu Gao, Andrew Lowy, Xingyu Zhou et al.

ICML 2024arXiv:2407.09690
10
citations

Privately Learning Smooth Distributions on the Hypercube by Projections

Clément Lalanne, Sébastien Gadat

ICML 2024arXiv:2409.10083
1
citations

Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages

Hilal Asi, Vitaly Feldman, Jelani Nelson et al.

ICML 2024arXiv:2404.10201
5
citations

Proactive DP: A Multiple Target Optimization Framework for DP-SGD

Marten van Dijk, Nhuong Nguyen, Toan N. Nguyen et al.

ICML 2024

Profile Reconstruction from Private Sketches

Hao WU, Rasmus Pagh

ICML 2024arXiv:2406.01158

Provable Privacy with Non-Private Pre-Processing

Yaxi Hu, Amartya Sanyal, Bernhard Schölkopf

ICML 2024arXiv:2403.13041
4
citations

Reducing Item Discrepancy via Differentially Private Robust Embedding Alignment for Privacy-Preserving Cross Domain Recommendation

Weiming Liu, Xiaolin Zheng, Chaochao Chen et al.

ICML 2024

Rethinking DP-SGD in Discrete Domain: Exploring Logistic Distribution in the Realm of signSGD

Jonggyu Jang, Seongjin Hwang, Hyun Jong Yang

ICML 2024

Shifted Interpolation for Differential Privacy

Jinho Bok, Weijie Su, Jason Altschuler

ICML 2024arXiv:2403.00278
11
citations

The Privacy Power of Correlated Noise in Decentralized Learning

Youssef Allouah, Anastasiia Koloskova, Aymane Firdoussi et al.

ICML 2024arXiv:2405.01031
18
citations

Unveiling Privacy, Memorization, and Input Curvature Links

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi et al.

ICML 2024arXiv:2402.18726
13
citations

ViP: A Differentially Private Foundation Model for Computer Vision

Yaodong Yu, Maziar Sanjabi, Yi Ma et al.

ICML 2024arXiv:2306.08842
18
citations