Most Cited ICML 2024 "knowledge cutoff" Papers

2,635 papers found • Page 1 of 14

#1

Position: The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning

Micah Goldblum, Marc Finzi, Keefer Rowan et al.

ICML 2024spotlight
60
citations
#2

Time Weaver: A Conditional Time Series Generation Model

Sai Shankar Narasimhan, Shubhankar Agarwal, Oguzhan Akcin et al.

ICML 2024spotlightarXiv:2403.02682
33
citations
#3

Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation

Yunheng Li, Zhong-Yu Li, Quan-Sheng Zeng et al.

ICML 2024arXiv:2406.00670
20
citations
#4

Data-efficient Large Vision Models through Sequential Autoregression

Zhiwei Hao, Jianyuan Guo, Chengcheng Wang et al.

ICML 2024arXiv:2402.04841
12
citations
#5

Minimum-Norm Interpolation Under Covariate Shift

Neil Mallinar, Austin Zane, Spencer Frei et al.

ICML 2024arXiv:2404.00522
12
citations
#6

Understanding Inter-Concept Relationships in Concept-Based Models

Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik

ICML 2024arXiv:2405.18217
10
citations
#7

Learning from Integral Losses in Physics Informed Neural Networks

Ehsan Saleh, Saba Ghaffari, Timothy Bretl et al.

ICML 2024arXiv:2305.17387
6
citations
#8

Faster Sampling via Stochastic Gradient Proximal Sampler

Xunpeng Huang, Difan Zou, Hanze Dong et al.

ICML 2024arXiv:2405.16734
3
citations
#9

Prompt-based Visual Alignment for Zero-shot Policy Transfer

Haihan Gao, Rui Zhang, Qi Yi et al.

ICML 2024arXiv:2406.03250
1
citations
#10

Automated Statistical Model Discovery with Language Models

Michael Li, Emily Fox, Noah Goodman

ICML 2024arXiv:2402.17879
#11

Nash Learning from Human Feedback

REMI MUNOS, Michal Valko, Daniele Calandriello et al.

ICML 2024spotlightarXiv:2312.00886
#12

MusicRL: Aligning Music Generation to Human Preferences

Geoffrey Cideron, Sertan Girgin, Mauro Verzetti et al.

ICML 2024arXiv:2301.11325
#13

LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery

Pingchuan Ma, Johnson Tsun-Hsuan Wang, Minghao Guo et al.

ICML 2024arXiv:2405.09783
#14

Kernel-Based Evaluation of Conditional Biological Sequence Models

Pierre Glaser, Steffan Paul, Alissa M. Hummer et al.

ICML 2024arXiv:2510.15601
#15

Relaxing the Accurate Imputation Assumption in Doubly Robust Learning for Debiased Collaborative Filtering

Haoxuan Li, Chunyuan Zheng, Shuyi Wang et al.

ICML 2024spotlight
#16

Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching

Yuchen Zhang, Tianle Zhang, Kai Wang et al.

ICML 2024arXiv:2402.05011
#17

WARM: On the Benefits of Weight Averaged Reward Models

Alexandre Rame, Nino Vieillard, Léonard Hussenot et al.

ICML 2024
#18

Batch and match: black-box variational inference with a score-based divergence

Diana Cai, Chirag Modi, Loucas Pillaud-Vivien et al.

ICML 2024spotlightarXiv:2402.14758
#19

Discovering Environments with XRM

Mohammad Pezeshki, Diane Bouchacourt, Mark Ibrahim et al.

ICML 2024arXiv:2309.16748
#20

Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng et al.

ICML 2024arXiv:2403.04132
#21

Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality

Tri Dao, Albert Gu

ICML 2024arXiv:2405.21060
#22

Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better

Vicente Balmaseda, Ying Xu, Yixin Cao et al.

ICML 2024arXiv:2404.16131
#23

MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts

Jianan Zhou, Zhiguang Cao, Yaoxin Wu et al.

ICML 2024arXiv:2405.01029
#24

Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response

Junyi Zou, Matthew Levine, Dessi Zaharieva et al.

ICML 2024arXiv:2402.17233
#25

Stereographic Spherical Sliced Wasserstein Distances

Huy Tran, Yikun Bai, Abihith Kothapalli et al.

ICML 2024spotlightarXiv:2402.02345
#26

Distribution Alignment Optimization through Neural Collapse for Long-tailed Classification

Jintong Gao, He Zhao, Dandan Guo et al.

ICML 2024
#27

How Learning by Reconstruction Produces Uninformative Features For Perception

Randall Balestriero, Yann LeCun

ICML 2024
#28

Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing

Youwei Shu, Xi Xiao, Derui Wang et al.

ICML 2024arXiv:2406.02309
#29

Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference

JIAN XU, Delu Zeng, John Paisley

ICML 2024arXiv:2407.17033
#30

Fool Your (Vision and) Language Model with Embarrassingly Simple Permutations

Yongshuo Zong, Tingyang Yu, Ruchika Chavhan et al.

ICML 2024arXiv:2310.01651
#31

Consistent Submodular Maximization

PAUL DUETTING, Federico Fusco, Silvio Lattanzi et al.

ICML 2024
#32

Calibration Bottleneck: Over-compressed Representations are Less Calibratable

Deng-Bao Wang, Min-Ling Zhang

ICML 2024
#33

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Natasha Butt, Blazej Manczak, Auke Wiggers et al.

ICML 2024arXiv:2402.04858
#34

Active Preference Learning for Large Language Models

William Muldrew, Peter Hayes, Mingtian Zhang et al.

ICML 2024arXiv:2402.08114
#35

InfoNet: Neural Estimation of Mutual Information without Test-Time Optimization

Zhengyang Hu, Song Kang, Qunsong Zeng et al.

ICML 2024arXiv:2402.10158
#36

Position: A Call for Embodied AI

Giuseppe Paolo, Jonas Gonzalez-Billandon, Balázs Kégl

ICML 2024
#37

Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts

Hyunsu Kim, Ye Gon Kim, Hongseok Yang et al.

ICML 2024arXiv:2407.04271
#38

Incorporating Information into Shapley Values: Reweighting via a Maximum Entropy Approach

Darya Biparva, Donatello Materassi

ICML 2024
#39

Position: Why We Must Rethink Empirical Research in Machine Learning

Moritz Herrmann, F. Julian D. Lange, Katharina Eggensperger et al.

ICML 2024arXiv:2405.02200
#40

HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning

Shengchao Hu, Ziqing Fan, Li Shen et al.

ICML 2024arXiv:2405.18080
#41

Q-value Regularized Transformer for Offline Reinforcement Learning

Shengchao Hu, Ziqing Fan, Chaoqin Huang et al.

ICML 2024arXiv:2405.17098
#42

Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization

Ziqing Fan, Shengchao Hu, Jiangchao Yao et al.

ICML 2024spotlightarXiv:2405.18890
#43

Boundary Exploration for Bayesian Optimization With Unknown Physical Constraints

Yunsheng Tian, Ane Zuniga, Xinwei Zhang et al.

ICML 2024arXiv:2402.07692
#44

Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang et al.

ICML 2024arXiv:2402.03268
#45

Peeking with PEAK: Sequential, Nonparametric Composite Hypothesis Tests for Means of Multiple Data Streams

Brian Cho, Kyra Gan, Nathan Kallus

ICML 2024arXiv:2402.06122
#46

From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation

Kun Su, Xiulong Liu, Eli Shlizerman

ICML 2024arXiv:2409.19132
#47

Multi-group Learning for Hierarchical Groups

Samuel Deng, Daniel Hsu

ICML 2024arXiv:2402.00258
#48

Fast Decision Boundary based Out-of-Distribution Detector

Litian Liu, Yao Qin

ICML 2024arXiv:2312.11536
#49

Ensemble Pruning for Out-of-distribution Generalization

Fengchun Qiao, Xi Peng

ICML 2024
#50

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Kartik Sharma, Srijan Kumar, Rakshit Trivedi

ICML 2024
#51

On the Asymptotic Distribution of the Minimum Empirical Risk

Jacob Westerhout, TrungTin Nguyen, Xin Guo et al.

ICML 2024
#52

RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback

Yufei Wang, Zhanyi Sun, Jesse Zhang et al.

ICML 2024arXiv:2402.03681
#53

Exploiting Code Symmetries for Learning Program Semantics

Kexin Pei, Weichen Li, Qirui Jin et al.

ICML 2024spotlightarXiv:2308.03312
#54

Identification and Estimation for Nonignorable Missing Data: A Data Fusion Approach

Zixiao Wang, AmirEmad Ghassami, Ilya Shpitser

ICML 2024arXiv:2311.09015
#55

Encodings for Prediction-based Neural Architecture Search

Yash Akhauri, Mohamed Abdelfattah

ICML 2024arXiv:2403.02484
#56

Chain of Code: Reasoning with a Language Model-Augmented Code Emulator

Chengshu Li, Jacky Liang, Andy Zeng et al.

ICML 2024arXiv:2312.04474
#57

Towards Compositionality in Concept Learning

Adam Stein, Aaditya Naik, Yinjun Wu et al.

ICML 2024arXiv:2406.18534
#58

A Minimaximalist Approach to Reinforcement Learning from Human Feedback

Gokul Swamy, Christoph Dann, Rahul Kidambi et al.

ICML 2024arXiv:2401.04056
#59

Language Agent Tree Search Unifies Reasoning, Acting, and Planning in Language Models

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman et al.

ICML 2024
#60

Image Hijacks: Adversarial Images can Control Generative Models at Runtime

Luke Bailey, Euan Ong, Stuart Russell et al.

ICML 2024arXiv:2309.00236
#61

TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision

Zhuo Chen, Jacob McCarran, Esteban Vizcaino et al.

ICML 2024arXiv:2404.10771
#62

Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics

Noga Mudrik, Yenho Chen, Eva Yezerets et al.

ICML 2024arXiv:2206.02972
#63

The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective

Chi-Heng Lin, Chiraag Kaushik, Eva Dyer et al.

ICML 2024arXiv:2210.05021
#64

Conditional Common Entropy for Instrumental Variable Testing and Partial Identification

Ziwei Jiang, Murat Kocaoglu

ICML 2024
#65

On the Maximal Local Disparity of Fairness-Aware Classifiers

Jinqiu Jin, Haoxuan Li, Fuli Feng

ICML 2024arXiv:2406.03255
#66

Balanced Data, Imbalanced Spectra: Unveiling Class Disparities with Spectral Imbalance

Chiraag Kaushik, Ran Liu, Chi-Heng Lin et al.

ICML 2024arXiv:2402.11742
#67

Learning Associative Memories with Gradient Descent

Vivien Cabannnes, Berfin Simsek, Alberto Bietti

ICML 2024
#68

QuRating: Selecting High-Quality Data for Training Language Models

Alexander Wettig, Aatmik Gupta, Saumya Malik et al.

ICML 2024spotlightarXiv:2402.09739
#69

On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization

Motahareh Sohrabi, Juan Ramirez, Tianyue Zhang et al.

ICML 2024arXiv:2406.04558
#70

Benchmarking Deletion Metrics with the Principled Explanations

Yipei Wang, Xiaoqian Wang

ICML 2024
#71

Online Matrix Completion: A Collaborative Approach with Hott Items

Dheeraj Baby, Soumyabrata Pal

ICML 2024arXiv:2408.05843
#72

Scaling Laws for Fine-Grained Mixture of Experts

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski et al.

ICML 2024arXiv:2402.07871
#73

Benign Overfitting in Adversarial Training of Neural Networks

Yunjuan Wang, Kaibo Zhang, Raman Arora

ICML 2024
#74

Survival Kernets: Scalable and Interpretable Deep Kernel Survival Analysis with an Accuracy Guarantee

George Chen

ICML 2024arXiv:2206.10477
#75

Sample as you Infer: Predictive Coding with Langevin Dynamics

Umais Zahid, Qinghai Guo, Zafeirios Fountas

ICML 2024arXiv:2311.13664
#76

NeWRF: A Deep Learning Framework for Wireless Radiation Field Reconstruction and Channel Prediction

Haofan Lu, Christopher Vattheuer, Baharan Mirzasoleiman et al.

ICML 2024arXiv:2403.03241
#77

Efficient PAC Learnability of Dynamical Systems Over Multilayer Networks

Zirou Qiu, Abhijin Adiga, Madhav Marathe et al.

ICML 2024arXiv:2405.06884
#78

How Language Model Hallucinations Can Snowball

Muru Zhang, Ofir Press, William Merrill et al.

ICML 2024arXiv:2305.13534
#79

APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference

Bowen Zhao, Hannaneh Hajishirzi, Qingqing Cao

ICML 2024arXiv:2401.12200
#80

Extracting Training Data From Document-Based VQA Models

Francesco Pinto, Nathalie Rauschmayr, Florian Tramer et al.

ICML 2024arXiv:2407.08707
#81

MindEye2: Shared-Subject Models Enable fMRI-To-Image With 1 Hour of Data

Paul Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva et al.

ICML 2024arXiv:2403.11207
#82

Prediction Accuracy of Learning in Games : Follow-the-Regularized-Leader meets Heisenberg

Yi Feng, Georgios Piliouras, Xiao Wang

ICML 2024arXiv:2406.10603
#83

PARCv2: Physics-aware Recurrent Convolutional Neural Networks for Spatiotemporal Dynamics Modeling

Phong Nguyen, Xinlun Cheng, Shahab Azarfar et al.

ICML 2024oralarXiv:2402.12503
#84

Unsupervised Concept Discovery Mitigates Spurious Correlations

Md Rifat Arefin, Yan Zhang, Aristide Baratin et al.

ICML 2024arXiv:2402.13368
#85

Scalable AI Safety via Doubly-Efficient Debate

Jonah Brown-Cohen, Geoffrey Irving, Georgios Piliouras

ICML 2024arXiv:2311.14125
#86

GeoMFormer: A General Architecture for Geometric Molecular Representation Learning

Tianlang Chen, Shengjie Luo, Di He et al.

ICML 2024arXiv:2406.16853
#87

Model Assessment and Selection under Temporal Distribution Shift

Elise Han, Chengpiao Huang, Kaizheng Wang

ICML 2024oralarXiv:2402.08672
#88

The Fundamental Limits of Least-Privilege Learning

Theresa Stadler, Bogdan Kulynych, Michael Gastpar et al.

ICML 2024arXiv:2402.12235
#89

Sequential Disentanglement by Extracting Static Information From A Single Sequence Element

Nimrod Berman, Ilan Naiman, Idan Arbiv et al.

ICML 2024arXiv:2406.18131
#90

Minimizing $f$-Divergences by Interpolating Velocity Fields

Song Liu, Jiahao Yu, Jack Simons et al.

ICML 2024arXiv:2305.15577
#91

Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models

Louis Sharrock, Jack Simons, Song Liu et al.

ICML 2024spotlightarXiv:2210.04872
#92

Bridging Mini-Batch and Asymptotic Analysis in Contrastive Learning: From InfoNCE to Kernel-Based Losses

Panagiotis Koromilas, Giorgos Bouritsas, Theodoros Giannakopoulos et al.

ICML 2024arXiv:2405.18045
#93

Subgoal-based Demonstration Learning for Formal Theorem Proving

Xueliang Zhao, Wenda Li, Lingpeng Kong

ICML 2024arXiv:2305.16366
#94

Vector Quantization Pretraining for EEG Time Series with Random Projection and Phase Alignment

Haokun Gui, Xiucheng Li, Xinyang Chen

ICML 2024
#95

Emergence of In-Context Reinforcement Learning from Noise Distillation

Ilya Zisman, Vladislav Kurenkov, Alexander Nikulin et al.

ICML 2024arXiv:2312.12275
#96

Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs

Yeonhong Park, Jake Hyun, SangLyul Cho et al.

ICML 2024arXiv:2402.10517
#97

Robust Universal Adversarial Perturbations

Changming Xu, Gagandeep Singh

ICML 2024arXiv:2206.10858
#98

Low-Cost High-Power Membership Inference Attacks

Sajjad Zarifzadeh, Philippe Liu, Reza Shokri

ICML 2024arXiv:2312.03262
#99

Towards Modular LLMs by Building and Reusing a Library of LoRAs

Oleksiy Ostapenko, Zhan Su, Edoardo Ponti et al.

ICML 2024arXiv:2405.11157
#100

Early Time Classification with Accumulated Accuracy Gap Control

Liran Ringel, Regev Cohen, Daniel Freedman et al.

ICML 2024arXiv:2402.00857
#101

Evaluating Instrument Validity using the Principle of Independent Mechanisms

Patrick F. Burauel

ICML 2024
#102

Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding

Guangyi Liu, Yu Wang, Zeyu Feng et al.

ICML 2024arXiv:2402.19009
#103

CogBench: a large language model walks into a psychology lab

Julian Coda-Forno, Marcel Binz, Jane Wang et al.

ICML 2024oralarXiv:2402.18225
#104

Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks

Akshay Kumar Jagadish, Julian Coda-Forno, Mirko Thalmann et al.

ICML 2024arXiv:2402.01821
#105

ConvNet vs Transformer, Supervised vs CLIP: Beyond ImageNet Accuracy

Kirill Vishniakov, Zhiqiang Shen, Zhuang Liu

ICML 2024arXiv:2311.09215
#106

Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data

Giannis Daras, Alexandros Dimakis, Constantinos Daskalakis

ICML 2024arXiv:2404.10177
#107

Optimally Improving Cooperative Learning in a Social Setting

Shahrzad Haddadan, Cheng Xin, Jie Gao

ICML 2024arXiv:2405.20808
#108

$\texttt{MoE-RBench}$: Towards Building Reliable Language Models with Sparse Mixture-of-Experts

Guanjie Chen, Xinyu Zhao, Tianlong Chen et al.

ICML 2024arXiv:2406.11353
#109

Simple linear attention language models balance the recall-throughput tradeoff

Simran Arora, Sabri Eyuboglu, Michael Zhang et al.

ICML 2024spotlightarXiv:2402.18668
#110

Principled Preferential Bayesian Optimization

Wenjie Xu, Wenbin Wang, Yuning Jiang et al.

ICML 2024arXiv:2402.05367
#111

SiT: Symmetry-invariant Transformers for Generalisation in Reinforcement Learning

Matthias Weissenbacher, Rishabh Agarwal, Yoshinobu Kawahara

ICML 2024arXiv:2406.15025
#112

On Positivity Condition for Causal Inference

Inwoo Hwang, Yesong Choe, Yeahoon Kwon et al.

ICML 2024
#113

Dynamic Memory Compression: Retrofitting LLMs for Accelerated Inference

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski et al.

ICML 2024arXiv:2403.09636
#114

Linguistic Calibration of Long-Form Generations

Neil Band, Xuechen Li, Tengyu Ma et al.

ICML 2024arXiv:2404.00474
#115

A Unified Framework for Learning with Nonlinear Model Classes from Arbitrary Linear Samples

Ben Adcock, Juan Cardenas, Nick Dexter

ICML 2024arXiv:2311.14886
#116

Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices

Nathaniel Cohen, Vladimir Kulikov, Matan Kleiner et al.

ICML 2024oralarXiv:2405.12211
#117

The Expressive Power of Path-Based Graph Neural Networks

Caterina Graziani, Tamara Drucks, Fabian Jogl et al.

ICML 2024
#118

Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion Transformers

Katherine Crowson, Stefan Baumann, Alex Birch et al.

ICML 2024arXiv:2401.11605
#119

Environment Design for Inverse Reinforcement Learning

Thomas Kleine Buening, Victor Villin, Christos Dimitrakakis

ICML 2024arXiv:2210.14972
#120

Stable Differentiable Causal Discovery

Achille Nazaret, Justin Hong, Elham Azizi et al.

ICML 2024arXiv:2311.10263
#121

Towards Optimal Adversarial Robust Q-learning with Bellman Infinity-error

Haoran Li, Zicheng Zhang, Wang Luo et al.

ICML 2024arXiv:2402.02165
#122

Can We Remove the Square-Root in Adaptive Gradient Methods? A Second-Order Perspective

Wu Lin, Felix Dangel, Runa Eschenhagen et al.

ICML 2024arXiv:2402.03496
#123

Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning

Saber Malekmohammadi, Yaoliang Yu, YANG CAO

ICML 2024arXiv:2406.03519
#124

A Tale of Tails: Model Collapse as a Change of Scaling Laws

Elvis Dohmatob, Yunzhen Feng, Pu Yang et al.

ICML 2024arXiv:2402.07043
#125

Adversarial Attacks on Combinatorial Multi-Armed Bandits

Rishab Balasubramanian, Jiawei Li, Tadepalli Prasad et al.

ICML 2024arXiv:2310.05308
#126

Practical Hamiltonian Monte Carlo on Riemannian Manifolds via Relativity Theory

Kai Xu, Hong Ge

ICML 2024
#127

From Coarse to Fine: Enable Comprehensive Graph Self-supervised Learning with Multi-granular Semantic Ensemble

Qianlong Wen, Mingxuan Ju, Zhongyu Ouyang et al.

ICML 2024
#128

A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity

Andrew Lee, Xiaoyan Bai, Itamar Pres et al.

ICML 2024arXiv:2401.01967
#129

Pre-Training Protein Bi-level Representation Through Span Mask Strategy On 3D Protein Chains

Jiale Zhao, Wanru Zhuang, Jia Song et al.

ICML 2024arXiv:2402.01481
#130

Planning, Fast and Slow: Online Reinforcement Learning with Action-Free Offline Data via Multiscale Planners

Chengjie Wu, Hao Hu, yiqin yang et al.

ICML 2024
#131

Graph Attention Retrospective

Kimon Fountoulakis, Amit Levi, Shenghao Yang et al.

ICML 2024arXiv:2202.13060
#132

Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning

Haoxin Liu, Harshavardhan Kamarthi, Lingkai Kong et al.

ICML 2024oralarXiv:2406.09130
#133

Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho, Minju Jo, Haksoo Lim et al.

ICML 2024arXiv:2408.09446
#134

Sparser, Better, Deeper, Stronger: Improving Static Sparse Training with Exact Orthogonal Initialization

Aleksandra I. Nowak, Łukasz Gniecki, Filip Szatkowski et al.

ICML 2024
#135

Safe Exploration in Dose Finding Clinical Trials with Heterogeneous Participants

Isabel Chien, Wessel Bruinsma, Javier Gonzalez et al.

ICML 2024
#136

TIC-TAC: A Framework For Improved Covariance Estimation In Deep Heteroscedastic Regression

Megh Shukla, Mathieu Salzmann, Alexandre Alahi

ICML 2024arXiv:2310.18953
#137

Challenges in Training PINNs: A Loss Landscape Perspective

Pratik Rathore, Weimu Lei, Zachary Frangella et al.

ICML 2024arXiv:2402.01868
#138

High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise

Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova et al.

ICML 2024arXiv:2310.01860
#139

Position: The Causal Revolution Needs Scientific Pragmatism

Joshua Loftus

ICML 2024arXiv:2406.02275
#140

A Unified Recipe for Deriving (Time-Uniform) PAC-Bayes Bounds

Ben Chugg, Hongjian Wang, Aaditya Ramdas

ICML 2024arXiv:2302.03421
#141

RankSEG: A Consistent Ranking-based Framework for Segmentation

Ben Dai, Chunlin Li

ICML 2024arXiv:2206.13086
#142

PruNeRF: Segment-Centric Dataset Pruning via 3D Spatial Consistency

Yeonsung Jung, Heecheol Yun, Joonhyung Park et al.

ICML 2024arXiv:2406.00798
#143

Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models

Ludwig Winkler, Lorenz Richter, Manfred Opper

ICML 2024arXiv:2405.03549
#144

Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms

Yichen Li, Chicheng Zhang

ICML 2024arXiv:2312.16860
#145

Coprocessor Actor Critic: A Model-Based Reinforcement Learning Approach For Adaptive Brain Stimulation

Michelle Pan, Mariah Schrum, Vivek Myers et al.

ICML 2024arXiv:2406.06714
#146

Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)

Drew Prinster, Samuel Stanton, Anqi Liu et al.

ICML 2024arXiv:2405.06627
#147

Learning to Continually Learn with the Bayesian Principle

Soochan Lee, Hyeonseong Jeon, Jaehyeon Son et al.

ICML 2024arXiv:2405.18758
#148

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Xuran Meng, Difan Zou, Yuan Cao

ICML 2024arXiv:2310.01975
#149

Repoformer: Selective Retrieval for Repository-Level Code Completion

Di Wu, Wasi Ahmad, Dejiao Zhang et al.

ICML 2024arXiv:2403.10059
#150

Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach

Anton Plaksin, Vitaly Kalev

ICML 2024arXiv:2405.02044
#151

On the Generalization of Stochastic Gradient Descent with Momentum

Ali Ramezani-Kebrya, Kimon Antonakopoulos, Volkan Cevher et al.

ICML 2024arXiv:1809.04564
#152

Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent

Yingru Li, Jiawei Xu, Lei Han et al.

ICML 2024arXiv:2402.10228
#153

A Geometric Explanation of the Likelihood OOD Detection Paradox

Hamidreza Kamkari, Brendan Ross, Jesse Cresswell et al.

ICML 2024arXiv:2403.18910
#154

Leveraging Attractor Dynamics in Spatial Navigation for Better Language Parsing

Xiaolong Zou, Xingxing Cao, Xiaojiao Yang et al.

ICML 2024spotlight
#155

Disparate Impact on Group Accuracy of Linearization for Private Inference

Saswat Das, Marco Romanelli, Ferdinando Fioretto

ICML 2024arXiv:2402.03629
#156

SqueezeLLM: Dense-and-Sparse Quantization

Sehoon Kim, Coleman Hooper, Amir Gholaminejad et al.

ICML 2024arXiv:2306.07629
#157

Closing the Gap: Achieving Global Convergence (Last Iterate) of Actor-Critic under Markovian Sampling with Neural Network Parametrization

Mudit Gaur, Amrit Singh Bedi, Di Wang et al.

ICML 2024spotlightarXiv:2405.01843
#158

An LLM Compiler for Parallel Function Calling

Sehoon Kim, Suhong Moon, Ryan Tabrizi et al.

ICML 2024arXiv:2312.04511
#159

Unbiased Multi-Label Learning from Crowdsourced Annotations

Mingxuan Xia, Zenan Huang, Runze Wu et al.

ICML 2024
#160

SleepFM: Multi-modal Representation Learning for Sleep Across Brain Activity, ECG and Respiratory Signals

Rahul Thapa, Bryan He, Magnus Ruud Kjaer et al.

ICML 2024arXiv:2405.17766
#161

Position: Evolving AI Collectives Enhance Human Diversity and Enable Self-Regulation

Shiyang Lai, Yujin Potter, Junsol Kim et al.

ICML 2024
#162

Revisiting Context Aggregation for Image Matting

Qinglin Liu, Xiaoqian Lv, Quanling Meng et al.

ICML 2024arXiv:2304.01171
#163

Learning Scale-Aware Spatio-temporal Implicit Representation for Event-based Motion Deblurring

Wei Yu, Jianing Li, Shengping Zhang et al.

ICML 2024oral
#164

Mind the Boundary: Coreset Selection via Reconstructing the Decision Boundary

Shuo Yang, Zhe Cao, Sheng Guo et al.

ICML 2024
#165

Position: Standardization of Behavioral Use Clauses is Necessary for the Adoption of Responsible Licensing of AI

Daniel McDuff, Tim Korjakow, Scott Cambo et al.

ICML 2024oral
#166

Infinite-Horizon Distributionally Robust Regret-Optimal Control

Taylan Kargin, Joudi Hajar, Vikrant Malik et al.

ICML 2024arXiv:2406.07248
#167

Accelerating Heterogeneous Federated Learning with Closed-form Classifiers

Eros Fanì, Raffaello Camoriano, Barbara Caputo et al.

ICML 2024arXiv:2406.01116
#168

Irregular Multivariate Time Series Forecasting: A Transformable Patching Graph Neural Networks Approach

Weijia Zhang, Chenlong Yin, Hao Liu et al.

ICML 2024oral
#169

Simplicity Bias via Global Convergence of Sharpness Minimization

Khashayar Gatmiry, Zhiyuan Li, Sashank J. Reddi et al.

ICML 2024arXiv:2410.16401
#170

Why Do You Grok? A Theoretical Analysis on Grokking Modular Addition

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu et al.

ICML 2024arXiv:2407.12332
#171

An Intrinsic Vector Heat Network

Alexander Gao, Maurice Chu, Mubbasir Kapadia et al.

ICML 2024arXiv:2406.09648
#172

Mean Field Langevin Actor-Critic: Faster Convergence and Global Optimality beyond Lazy Learning

Kakei Yamamoto, Kazusato Oko, Zhuoran Yang et al.

ICML 2024oral
#173

Towards an Understanding of Stepwise Inference in Transformers: A Synthetic Graph Navigation Model

Mikail Khona, Maya Okawa, Jan Hula et al.

ICML 2024arXiv:2402.07757
#174

Neural-Kernel Conditional Mean Embeddings

Eiki Shimizu, Kenji Fukumizu, Dino Sejdinovic

ICML 2024arXiv:2403.10859
#175

Stochastic Quantum Sampling for Non-Logconcave Distributions and Estimating Partition Functions

Guneykan Ozgul, Xiantao Li, Mehrdad Mahdavi et al.

ICML 2024arXiv:2310.11445
#176

Enabling Uncertainty Estimation in Iterative Neural Networks

Nikita Durasov, Doruk Oner, Jonathan Donier et al.

ICML 2024arXiv:2403.16732
#177

MultiMax: Sparse and Multi-Modal Attention Learning

Yuxuan Zhou, Mario Fritz, Margret Keuper

ICML 2024arXiv:2406.01189
#178

Improving Neural Additive Models with Bayesian Principles

Kouroche Bouchiat, Alexander Immer, Hugo Yèche et al.

ICML 2024arXiv:2305.16905
#179

Averaging $n$-step Returns Reduces Variance in Reinforcement Learning

Brett Daley, Martha White, Marlos C. Machado

ICML 2024oralarXiv:2402.03903
#180

Implicit meta-learning may lead language models to trust more reliable sources

Dmitrii Krasheninnikov, Egor Krasheninnikov, Bruno Mlodozeniec et al.

ICML 2024arXiv:2310.15047
#181

Multi-Track Message Passing: Tackling Oversmoothing and Oversquashing in Graph Learning via Preventing Heterophily Mixing

Hongbin Pei, Yu Li, Huiqi Deng et al.

ICML 2024spotlight
#182

Overestimation, Overfitting, and Plasticity in Actor-Critic: the Bitter Lesson of Reinforcement Learning

Michal Nauman, Michał Bortkiewicz, Piotr Milos et al.

ICML 2024arXiv:2403.00514
#183

Residual-Conditioned Optimal Transport: Towards Structure-Preserving Unpaired and Paired Image Restoration

Xiaole Tang, Hu Xin, Xiang Gu et al.

ICML 2024arXiv:2405.02843
#184

Prometheus: Out-of-distribution Fluid Dynamics Modeling with Disentangled Graph ODE

Hao Wu, Huiyuan Wang, kun wang et al.

ICML 2024oral
#185

Do Models Explain Themselves? Counterfactual Simulatability of Natural Language Explanations

Yanda Chen, Ruiqi Zhong, Narutatsu Ri et al.

ICML 2024spotlightarXiv:2307.08678
#186

Total Variation Distance Meets Probabilistic Inference

Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel et al.

ICML 2024arXiv:2309.09134
#187

Improving Adversarial Energy-Based Model via Diffusion Process

Cong Geng, Tian Han, Peng-Tao Jiang et al.

ICML 2024arXiv:2403.01666
#188

A3S: A General Active Clustering Method with Pairwise Constraints

Xun Deng, Junlong Liu, Han Zhong et al.

ICML 2024arXiv:2407.10196
#189

An Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization

Emre Sahinoglu, Shahin Shahrampour

ICML 2024arXiv:2406.01484
#190

Learning a Diffusion Model Policy from Rewards via Q-Score Matching

Michael Psenka, Alejandro Escontrela, Pieter Abbeel et al.

ICML 2024arXiv:2312.11752
#191

Online Cascade Learning for Efficient Inference over Streams

Lunyiu Nie, Zhimin Ding, Erdong Hu et al.

ICML 2024arXiv:2402.04513
#192

Investigating Pre-Training Objectives for Generalization in Vision-Based Reinforcement Learning

Donghu Kim, Hojoon Lee, Kyungmin Lee et al.

ICML 2024oralarXiv:2406.06037
#193

Learning from Streaming Data when Users Choose

Jinyan Su, Sarah Dean

ICML 2024arXiv:2406.01481
#194

Scaling Speech Technology to 1,000+ Languages

Vineel Pratap Konduru, Andros Tjandra, Bowen Shi et al.

ICML 2024
#195

Robustness of Nonlinear Representation Learning

Simon Buchholz, Bernhard Schölkopf

ICML 2024arXiv:2503.15355
#196

Conformal Prediction with Learned Features

Shayan Kiyani, George J. Pappas, Hamed Hassani

ICML 2024arXiv:2404.17487
#197

Symmetry Induces Structure and Constraint of Learning

Liu Ziyin

ICML 2024arXiv:2309.16932
#198

Achieving Margin Maximization Exponentially Fast via Progressive Norm Rescaling

Mingze Wang, Zeping Min, Lei Wu

ICML 2024arXiv:2311.14387
#199

T-Cal: An Optimal Test for the Calibration of Predictive Models

Donghwan Lee, Xinmeng Huang, Hamed Hassani et al.

ICML 2024arXiv:2203.01850
#200

Measures of diversity and space-filling designs for categorical data

AstraZeneca Pharmaceutica, Emilio Domínguez-Sánchez, Merwan Barlier et al.

ICML 2024
PreviousNext