🧬Language Models

Instruction Tuning

Fine-tuning models to follow instructions

100 papers4,022 total citations
Compare with other topics
Feb '24 Jan '26615 papers
Also includes: instruction tuning, instruction fine-tuning, instruction following, supervised fine-tuning

Top Papers

#1

Safety Alignment Should be Made More Than Just a Few Tokens Deep

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu et al.

ICLR 2025
277
citations
#2

Think before you speak: Training Language Models With Pause Tokens

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat et al.

ICLR 2024
187
citations
#3

OctoPack: Instruction Tuning Code Large Language Models

Niklas Muennighoff, Qian Liu, Armel Zebaze et al.

ICLR 2024
187
citations
#4

Osprey: Pixel Understanding with Visual Instruction Tuning

Yuqian Yuan, Wentong Li, Jian liu et al.

CVPR 2024
147
citations
#5

ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback

Ming Li, Taojiannan Yang, Huafeng Kuang et al.

ECCV 2024
146
citations
#6

Multimodal Web Navigation with Instruction-Finetuned Foundation Models

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum et al.

ICLR 2024
141
citations
#7

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs

Jan Betley, Daniel Tan, Niels Warncke et al.

ICML 2025
110
citations
#8

Understanding Catastrophic Forgetting in Language Models via Implicit Inference

Suhas Kotha, Jacob Springer, Aditi Raghunathan

ICLR 2024
103
citations
#9

HelpSteer2-Preference: Complementing Ratings with Preferences

Zhilin Wang, Alexander Bukharin, Olivier Delalleau et al.

ICLR 2025
102
citations
#10

AxBench: Steering LLMs? Even Simple Baselines Outperform Sparse Autoencoders

Zhengxuan Wu, Aryaman Arora, Atticus Geiger et al.

ICML 2025
100
citations
#11

LayoutLLM: Layout Instruction Tuning with Large Language Models for Document Understanding

Chuwei Luo, Yufan Shen, Zhaoqing Zhu et al.

CVPR 2024
98
citations
#12

Fine-Tuning Enhances Existing Mechanisms: A Case Study on Entity Tracking

Nikhil Prakash, Tamar Shaham, Tal Haklay et al.

ICLR 2024
97
citations
#13

Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks

Samyak Jain, Robert Kirk, Ekdeep Singh Lubana et al.

ICLR 2024
89
citations
#14

How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?

Jingfeng Wu, Difan Zou, Zixiang Chen et al.

ICLR 2024
85
citations
#15

InstructVideo: Instructing Video Diffusion Models with Human Feedback

Hangjie Yuan, Shiwei Zhang, Xiang Wang et al.

CVPR 2024
80
citations
#16

MAVIS: Mathematical Visual Instruction Tuning with an Automatic Data Engine

Renrui Zhang, Xinyu Wei, Dongzhi Jiang et al.

ICLR 2025
74
citations
#17

Model Stock: All we need is just a few fine-tuned models

Dong-Hwan Jang, Sangdoo Yun, Dongyoon Han

ECCV 2024
71
citations
#18

Fine-tuning can cripple your foundation model; preserving features may be the solution

Philip Torr, Puneet Dokania, Jishnu Mukhoti et al.

ICLR 2025
70
citations
#19

FINER: Flexible Spectral-bias Tuning in Implicit NEural Representation by Variable-periodic Activation Functions

Zhen Liu, Hao Zhu, Qi Zhang et al.

CVPR 2024
66
citations
#20

Evaluating the Zero-shot Robustness of Instruction-tuned Language Models

Jiuding Sun, Chantal Shaib, Byron Wallace

ICLR 2024
63
citations
#21

Learning Dynamics of LLM Finetuning

YI REN, Danica Sutherland

ICLR 2025
61
citations
#22

DePT: Decoupled Prompt Tuning

Ji Zhang, Shihan Wu, Lianli Gao et al.

CVPR 2024
60
citations
#23

What Matters When Repurposing Diffusion Models for General Dense Perception Tasks?

Guangkai Xu, yongtao ge, Mingyu Liu et al.

ICLR 2025arXiv:2403.06090
diffusion modelsdense perception tasksmonocular depth estimationsurface normal estimation+4
56
citations
#24

AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials

Yiheng Xu, Dunjie Lu, Zhennan Shen et al.

ICLR 2025
50
citations
#25

V2Xum-LLM: Cross-Modal Video Summarization with Temporal Prompt Instruction Tuning

Hang Hua, Yunlong Tang, Chenliang Xu et al.

AAAI 2025
47
citations
#26

Two-stage LLM Fine-tuning with Less Specialization and More Generalization

Yihan Wang, Si Si, Daliang Li et al.

ICLR 2024
42
citations
#27

EmoVIT: Revolutionizing Emotion Insights with Visual Instruction Tuning

Hongxia Xie, Chu-Jun Peng, Yu-Wen Tseng et al.

CVPR 2024
38
citations
#28

5%>100%: Breaking Performance Shackles of Full Fine-Tuning on Visual Recognition Tasks

Dongshuo Yin, Leiyi Hu, Bin Li et al.

CVPR 2025
38
citations
#29

When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations

Aleksandar Petrov, Philip Torr, Adel Bibi

ICLR 2024
38
citations
#30

Human-Object Interaction from Human-Level Instructions

Zhen Wu, Jiaman Li, Pei Xu et al.

ICCV 2025
36
citations
#31

Generalizing Verifiable Instruction Following

Valentina Pyatkin, Saumya Malik, Victoria Graf et al.

NeurIPS 2025
36
citations
#32

MBR and QE Finetuning: Training-time Distillation of the Best and Most Expensive Decoding Methods

Mara Finkelstein, Markus Freitag

ICLR 2024
36
citations
#33

Prompting Hard or Hardly Prompting: Prompt Inversion for Text-to-Image Diffusion Models

Shweta Mahajan, Tanzila Rahman, Kwang Moo Yi et al.

CVPR 2024
35
citations
#34

LION: Implicit Vision Prompt Tuning

Haixin Wang, Jianlong Chang, Yihang Zhai et al.

AAAI 2024arXiv:2303.09992
vision prompt tuningimplicit layersvision transformerscomputational efficiency+4
35
citations
#35

Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye et al.

AAAI 2025
30
citations
#36

Dataset Distillation by Automatic Training Trajectories

Dai Liu, Jindong Gu, Hu Cao et al.

ECCV 2024
29
citations
#37

UMIE: Unified Multimodal Information Extraction with Instruction Tuning

Lin Sun, Kai Zhang, Qingyuan Li et al.

AAAI 2024arXiv:2401.03082
multimodal information extractioninstruction tuningunified modelgeneration problem+3
29
citations
#38

CAT-SAM: Conditional Tuning for Few-Shot Adaptation of Segment Anything Model

Aoran Xiao, Weihao Xuan, Heli Qi et al.

ECCV 2024
28
citations
#39

Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning

Hanxun Yu, Wentong Li, Song Wang et al.

CVPR 2025
28
citations
#40

Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models

Zhejun Zhang, Peter Karkus, Maximilian Igl et al.

CVPR 2025
28
citations
#41

From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning

Le Zhuo, Liangbing Zhao, Sayak Paul et al.

ICCV 2025
28
citations
#42

Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness

Haochen Wang, Yucheng Zhao, Tiancai Wang et al.

ICCV 2025
28
citations
#43

ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning

Beomyoung Kim, Joonsang Yu, Sung Ju Hwang

CVPR 2024
27
citations
#44

Small Model Can Self-Correct

Haixia Han, Jiaqing Liang, Jie Shi et al.

AAAI 2024
26
citations
#45

Efficient Inference of Vision Instruction-Following Models with Elastic Cache

ZUYAN LIU, Benlin Liu, Jiahui Wang et al.

ECCV 2024
25
citations
#46

NLSR: Neuron-Level Safety Realignment of Large Language Models Against Harmful Fine-Tuning

Xin Yi, Shunfan Zheng, Linlin Wang et al.

AAAI 2025
25
citations
#47

Specialized Foundation Models Struggle to Beat Supervised Baselines

Zongzhe Xu, Ritvik Gupta, Wenduo Cheng et al.

ICLR 2025
24
citations
#48

Instructive Decoding: Instruction-Tuned Large Language Models are Self-Refiner from Noisy Instructions

Taehyeon Kim, JOONKEE KIM, Gihun Lee et al.

ICLR 2024
24
citations
#49

AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning

Yuwei Tang, ZhenYi Lin, Qilong Wang et al.

CVPR 2024
24
citations
#50

Training-Free Pretrained Model Merging

Zhengqi Xu, Ke Yuan, Huiqiong Wang et al.

CVPR 2024
24
citations
#51

LiNeS: Post-training Layer Scaling Prevents Forgetting and Enhances Model Merging

Ke Wang, Nikos Dimitriadis, Alessandro Favero et al.

ICLR 2025
23
citations
#52

Self-Consistency Preference Optimization

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang et al.

ICML 2025
23
citations
#53

CARP: Visuomotor Policy Learning via Coarse-to-Fine Autoregressive Prediction

Zhefei Gong, Pengxiang Ding, Shangke Lyu et al.

ICCV 2025
23
citations
#54

Test-Time Adaptation for Depth Completion

Hyoungseob Park, Anjali W Gupta, Alex Wong

CVPR 2024
23
citations
#55

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Jinlong Pang, Na Di, Zhaowei Zhu et al.

ICML 2025
22
citations
#56

Training on the Benchmark Is Not All You Need

Shiwen Ni, Xiangtao Kong, Chengming Li et al.

AAAI 2025
21
citations
#57

Improving Semantic Understanding in Speech Language Models via Brain-tuning

Omer Moussa, Dietrich Klakow, Mariya Toneva

ICLR 2025
21
citations
#58

ASAM: Boosting Segment Anything Model with Adversarial Tuning

Bo Li, Haoke Xiao, Lv Tang

CVPR 2024
20
citations
#59

From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data

Zheyang Xiong, Vasilis Papageorgiou, Kangwook Lee et al.

ICLR 2025
19
citations
#60

Reducing Tool Hallucination via Reliability Alignment

Hongshen Xu, Zichen Zhu, Lei Pan et al.

ICML 2025
19
citations
#61

Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani et al.

ICLR 2025
18
citations
#62

Instruct-SkillMix: A Powerful Pipeline for LLM Instruction Tuning

Simran Kaur, Simon Park, Anirudh Goyal et al.

ICLR 2025arXiv:2408.14774
instruction tuningskill extractionllm metacognitionsft data generation+3
18
citations
#63

Controllable Context Sensitivity and the Knob Behind It

Julian Minder, Kevin Du, Niklas Stoehr et al.

ICLR 2025
17
citations
#64

ThinkBot: Embodied Instruction Following with Thought Chain Reasoning

Guanxing Lu, Ziwei Wang, Changliu Liu et al.

ICLR 2025
17
citations
#65

Video-STaR: Self-Training Enables Video Instruction Tuning with Any Supervision

Orr Zohar, Xiaohan Wang, Yonatan Bitton et al.

ICLR 2025
17
citations
#66

Towards Green AI in Fine-tuning Large Language Models via Adaptive Backpropagation

Kai Huang, Hanyun Yin, Heng Huang et al.

ICLR 2024
17
citations
#67

Controllable Navigation Instruction Generation with Chain of Thought Prompting

Xianghao Kong, Jinyu Chen, Wenguan Wang et al.

ECCV 2024
16
citations
#68

Mixture of Noise for Pre-Trained Model-Based Class-Incremental Learning

Kai Jiang, Zhengyan Shi, Dell Zhang et al.

NeurIPS 2025
16
citations
#69

Weak-to-Strong Preference Optimization: Stealing Reward from Weak Aligned Model

Wenhong Zhu, Zhiwei He, Xiaofeng Wang et al.

ICLR 2025
14
citations
#70

ProTeCt: Prompt Tuning for Taxonomic Open Set Classification

Tz-Ying Wu, Chih-Hui Ho, Nuno Vasconcelos

CVPR 2024
14
citations
#71

KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference

Xing Li, Zeyu Xing, Yiming Li et al.

ICML 2025
14
citations
#72

Compound Text-Guided Prompt Tuning via Image-Adaptive Cues

Hao Tan, Jun Li, Yizhuang Zhou et al.

AAAI 2024arXiv:2312.06401
prompt tuningvision-language modelsfew-shot recognitiondomain generalization+3
13
citations
#73

R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning

Lijun Sheng, Jian Liang, Zilei Wang et al.

CVPR 2025
13
citations
#74

In Search of Adam’s Secret Sauce

Antonio Orvieto, Robert Gower

NeurIPS 2025
12
citations
#75

Lipsum-FT: Robust Fine-Tuning of Zero-Shot Models Using Random Text Guidance

Giung Nam, Byeongho Heo, Juho Lee

ICLR 2024
12
citations
#76

CoT Red-Handed: Stress Testing Chain-of-Thought Monitoring

Benjamin Arnav, Pablo Bernabeu-Perez, Nathan Helm-Burger et al.

NeurIPS 2025
12
citations
#77

SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models

Jiale Cheng, Xiao Liu, Cunxiang Wang et al.

ICLR 2025
12
citations
#78

Defeasible Visual Entailment: Benchmark, Evaluator, and Reward-Driven Optimization

Yue Zhang, Liqiang Jing, Vibhav Gogate

AAAI 2025
12
citations
#79

RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation

Mingfei Han, Liang Ma, Kamila Zhumakhanova et al.

CVPR 2025
12
citations
#80

Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation

Yibo Wang, Tiansheng Huang, Li Shen et al.

NeurIPS 2025
12
citations
#81

Robust Test-Time Adaptation for Zero-Shot Prompt Tuning

Ding-Chu Zhang, Zhi Zhou, Yufeng Li

AAAI 2024
12
citations
#82

From Activation to Initialization: Scaling Insights for Optimizing Neural Fields

Hemanth Saratchandran, Sameera Ramasinghe, Simon Lucey

CVPR 2024
11
citations
#83

Test-Time Personalization with Meta Prompt for Gaze Estimation

Huan Liu, Julia Qi, Zhenhao Li et al.

AAAI 2024arXiv:2401.01577
gaze estimationtest-time personalizationprompt tuningmeta-learning+2
11
citations
#84

Benign Samples Matter! Fine-tuning On Outlier Benign Samples Severely Breaks Safety

Zihan Guan, Mengxuan Hu, Ronghang Zhu et al.

ICML 2025
11
citations
#85

Tuning-Free Inversion-Enhanced Control for Consistent Image Editing

Xiaoyue Duan, Shuhao Cui, Guoliang Kang et al.

AAAI 2024arXiv:2312.14611
image editingdiffusion modelsddim reconstructionself-attention layers+4
11
citations
#86

Step Differences in Instructional Video

Tushar Nagarajan, Lorenzo Torresani

CVPR 2024
10
citations
#87

Transformer Copilot: Learning from The Mistake Log in LLM Fine-tuning

Jiaru Zou, Yikun Ban, Zihao Li et al.

NeurIPS 2025arXiv:2505.16270
mistake log trackinglogits rectificationsupervised fine-tuningtransformer copilot framework+3
10
citations
#88

Understanding and Improving Optimization in Predictive Coding Networks

Nicholas Alonso, Jeffrey Krichmar, Emre Neftci

AAAI 2024arXiv:2305.13562
predictive coding networksinference learning algorithmbiological plausibilityoptimization methods+3
10
citations
#89

Tuning the Frequencies: Robust Training for Sinusoidal Neural Networks

Tiago Novello, Diana Aldana Moreno, André Araujo et al.

CVPR 2025
10
citations
#90

Benchmarking Multimodal CoT Reward Model Stepwise by Visual Program

Minghe Gao, Xuqi Liu, Zhongqi Yue et al.

ICCV 2025
10
citations
#91

Towards More Accurate Diffusion Model Acceleration with A Timestep Tuner

Mengfei Xia, Yujun Shen, Changsong Lei et al.

CVPR 2024
9
citations
#92

Unraveling Batch Normalization for Realistic Test-Time Adaptation

Zixian Su, Jingwei Guo, Kai Yao et al.

AAAI 2024arXiv:2312.09486
batch normalizationtest-time adaptationdomain shiftmini-batch degradation+3
9
citations
#93

O-TPT: Orthogonality Constraints for Calibrating Test-time Prompt Tuning in Vision-Language Models

Ashshak Sharifdeen, Muhammad Akhtar Munir, Sanoojan Baliah et al.

CVPR 2025
9
citations
#94

Rapidly Adapting Policies to the Real-World via Simulation-Guided Fine-Tuning

Patrick Yin, Tyler Westenbroek, Ching-An Cheng et al.

ICLR 2025
9
citations
#95

Context-Parametric Inversion: Why Instruction Finetuning May Not Actually Improve Context Reliance

Sachin Goyal, Christina Baek, Zico Kolter et al.

ICLR 2025
9
citations
#96

InverseCoder: Self-improving Instruction-Tuned Code LLMs with Inverse-Instruct

Yutong Wu, Di Huang, Wenxuan Shi et al.

AAAI 2025
9
citations
#97

Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function

Maria-Florina Balcan, Anh Nguyen, Dravyansh Sharma

NeurIPS 2025
8
citations
#98

From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers

Bharat Runwal, Tejaswini Pedapati, Pin-Yu Chen

AAAI 2025
8
citations
#99

Bottom-Up Domain Prompt Tuning for Generalized Face Anti-Spoofing

SI-QI LIU, Qirui Wang, Pong Chi Yuen

ECCV 2024
face anti-spoofingvision-language modelprompt tuningdomain generalization+4
8
citations
#100

REPA Works Until It Doesn’t: Early-Stopped, Holistic Alignment Supercharges Diffusion Training

Ziqiao Wang, Wangbo Zhao, Yuhao Zhou et al.

NeurIPS 2025
8
citations