🧬Optimization

Stochastic Optimization

SGD and related optimization methods

100 papers1,829 total citations
Compare with other topics
Feb '24 Jan '261415 papers
Also includes: stochastic optimization, stochastic gradient descent, sgd, adam, optimizer

Top Papers

#1

Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training

Hong Liu, Zhiyuan Li, David Hall et al.

ICLR 2024
222
citations
#2

Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems

Hyungjin Chung, Suhyeon Lee, Jong Chul YE

ICLR 2024
116
citations
#3

Offline Actor-Critic for Average Reward MDPs

William Powell, Jeongyeol Kwon, Qiaomin Xie et al.

NeurIPS 2025
offline policy optimizationaverage-reward mdpspessimistic actor-criticlinear function approximation+3
73
citations
#4

End-to-End Rate-Distortion Optimized 3D Gaussian Representation

Henan Wang, Hanxin Zhu, Tianyu He et al.

ECCV 2024
67
citations
#5

The Blessing of Randomness: SDE Beats ODE in General Diffusion-based Image Editing

Shen Nie, Hanzhong Guo, Cheng Lu et al.

ICLR 2024
59
citations
#6

FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally

Qiuhong Shen, Xingyi Yang, Xinchao Wang

ECCV 2024
45
citations
#7

Test-time Alignment of Diffusion Models without Reward Over-optimization

Sunwoo Kim, Minkyu Kim, Dongmin Park

ICLR 2025
39
citations
#8

Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data

YongKyung Oh, Dongyoung Lim, Sungil Kim

ICLR 2024
38
citations
#9

How to Fine-Tune Vision Models with SGD

Ananya Kumar, Ruoqi Shen, Sebastien Bubeck et al.

ICLR 2024
35
citations
#10

Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization

Junkang Wu, Yuexiang Xie, Zhengyi Yang et al.

ICLR 2025
27
citations
#11

Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury et al.

ICLR 2025
27
citations
#12

Self-Improvement for Neural Combinatorial Optimization: Sample Without Replacement, but Improvement

Dominik Grimm, Jonathan Pirnay

ICLR 2025
26
citations
#13

ASGO: Adaptive Structured Gradient Optimization

Kang An, Yuxing Liu, Rui Pan et al.

NeurIPS 2025
26
citations
#14

Runtime Analysis of the SMS-EMOA for Many-Objective Optimization

Weijie Zheng, Benjamin Doerr

AAAI 2024arXiv:2312.10290
runtime analysismany-objective optimizationsms-emoa algorithmpareto front computation+4
24
citations
#15

Quasi-Monte Carlo for 3D Sliced Wasserstein

Khai Nguyen, Nicola Bariletto, Nhat Ho

ICLR 2024
24
citations
#16

The AdEMAMix Optimizer: Better, Faster, Older

Matteo Pagliardini, Pierre Ablin, David Grangier

ICLR 2025
23
citations
#17

Nonconvex Stochastic Optimization under Heavy-Tailed Noises: Optimal Convergence without Gradient Clipping

Zijian Liu, Zhengyuan Zhou

ICLR 2025arXiv:2412.19529
stochastic optimizationheavy-tailed noisenonconvex optimizationgradient clipping+4
23
citations
#18

Implicit bias of SGD in $L_2$-regularized linear DNNs: One-way jumps from high to low rank

Zihan Wang, Arthur Jacot

ICLR 2024
23
citations
#19

Self-Consistency Preference Optimization

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang et al.

ICML 2025
23
citations
#20

ZO-AdaMU Optimizer: Adapting Perturbation by the Momentum and Uncertainty in Zeroth-Order Optimization

Shuoran Jiang, Qingcai Chen, Yang Xiang et al.

AAAI 2024arXiv:2312.15184
zeroth-order optimizationmemory-efficient traininglarge language modelsmomentum adaptation+3
20
citations
#21

Domain Randomization via Entropy Maximization

Gabriele Tiboni, Pascal Klink, Jan Peters et al.

ICLR 2024
20
citations
#22

Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs

Kejun Tang, Jiayu Zhai, Xiaoliang Wan et al.

ICLR 2024
19
citations
#23

Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets

Zhen Liu, Tim Xiao, Weiyang Liu et al.

ICLR 2025arXiv:2412.07775
diffusion model alignmentgenerative flow networksreward finetuningdiversity preservation+4
19
citations
#24

Constrained Bayesian Optimization under Partial Observations: Balanced Improvements and Provable Convergence

Shengbo Wang, Ke Li

AAAI 2024arXiv:2312.03212
bayesian optimizationpartial observabilityconstrained optimizationacquisition function design+3
19
citations
#25

Standard Gaussian Process is All You Need for High-Dimensional Bayesian Optimization

Zhitong Xu, Haitao Wang, Jeff Phillips et al.

ICLR 2025
18
citations
#26

B2Opt: Learning to Optimize Black-box Optimization with Little Budget

Xiaobin Li, Kai Wu, Xiaoyu Zhang et al.

AAAI 2025
18
citations
#27

Temporally and Distributionally Robust Optimization for Cold-Start Recommendation

Xinyu Lin, Wenjie Wang, Jujia Zhao et al.

AAAI 2024arXiv:2312.09901
cold-start recommendationcollaborative filteringtemporal feature shiftsdistributionally robust optimization+2
18
citations
#28

Understanding Optimization in Deep Learning with Central Flows

Jeremy Cohen, Alex Damian, Ameet Talwalkar et al.

ICLR 2025
18
citations
#29

Provable Benefit of Annealed Langevin Monte Carlo for Non-log-concave Sampling

Wei Guo, Molei Tao, Yongxin Chen

ICLR 2025arXiv:2407.16936
non-log-concave samplinglangevin monte carloannealing techniquesmultimodal distributions+4
17
citations
#30

Grokking at the Edge of Numerical Stability

Lucas Prieto, Melih Barsbey, Pedro Mediano et al.

ICLR 2025arXiv:2501.04697
grokking phenomenonnumerical stabilitysoftmax collapsedelayed generalization+4
17
citations
#31

No Preference Left Behind: Group Distributional Preference Optimization

Binwei Yao, Zefan Cai, Yun-Shiuan Chuang et al.

ICLR 2025arXiv:2412.20299
preference alignmentgroup distributional preferencespluralistic alignmentbelief-conditioned preferences+3
17
citations
#32

Learning to Optimize Permutation Flow Shop Scheduling via Graph-Based Imitation Learning

Longkang Li, Siyuan Liang, Zihao Zhu et al.

AAAI 2024arXiv:2210.17178
permutation flow shop schedulinggraph-based imitation learningmanufacturing systems optimizationlarge-scale scheduling problems+4
16
citations
#33

Does SGD really happen in tiny subspaces?

Minhak Song, Kwangjun Ahn, Chulhee Yun

ICLR 2025
16
citations
#34

Decentralized Riemannian Conjugate Gradient Method on the Stiefel Manifold

Jun Chen, Haishan Ye, Mengmeng Wang et al.

ICLR 2024
16
citations
#35

Adaptive teachers for amortized samplers

Minsu Kim, Sanghyeok Choi, Taeyoung Yun et al.

ICLR 2025arXiv:2410.01432
amortized inferencegenerative flow networksdiffusion-based samplingsequential decision-making+4
15
citations
#36

Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics

Sebastian Sanokowski, Wilhelm Berghammer, Haoyu Wang et al.

ICLR 2025
14
citations
#37

Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization

XiangCheng Zhang, Fang Kong, Baoxiang Wang et al.

ICLR 2025
14
citations
#38

FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Virginia Aglietti, Ira Ktena, Jessica Schrouff et al.

ICML 2025
14
citations
#39

Deep Distributed Optimization for Large-Scale Quadratic Programming

Augustinos Saravanos, Hunter Kuperman, Alex Oshin et al.

ICLR 2025
14
citations
#40

AdaGrad under Anisotropic Smoothness

Yuxing Liu, Rui Pan, Tong Zhang

ICLR 2025
14
citations
#41

Light Schrödinger Bridge

Alexander Korotin, Nikita Gushchin, Evgeny Burnaev

ICLR 2024
13
citations
#42

Symmetric Mean-field Langevin Dynamics for Distributional Minimax Problems

Juno Kim, Kakei Yamamoto, Kazusato Oko et al.

ICLR 2024
13
citations
#43

Trust Region Methods for Nonconvex Stochastic Optimization beyond Lipschitz Smoothness

Chenghan Xie, Chenxi Li, Chuwen Zhang et al.

AAAI 2024arXiv:2310.17319
trust region methodsnonconvex stochastic optimizationgeneralized smoothnessdistributionally robust optimization+4
13
citations
#44

Emergence and scaling laws in SGD learning of shallow neural networks

Yunwei Ren, Eshaan Nichani, Denny Wu et al.

NeurIPS 2025
12
citations
#45

Beyond Stationarity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods

Sara Klein, Simon Weissmann, Leif Döring

ICLR 2024
12
citations
#46

In Search of Adam’s Secret Sauce

Antonio Orvieto, Robert Gower

NeurIPS 2025
12
citations
#47

Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing

Song Xia, Yi Yu, Jiang Xudong et al.

ICLR 2024
12
citations
#48

Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression

Adam Block, Dylan Foster, Akshay Krishnamurthy et al.

ICLR 2024
11
citations
#49

SDGMNet: Statistic-Based Dynamic Gradient Modulation for Local Descriptor Learning

Yuxin Deng, Jiayi Ma

AAAI 2024arXiv:2106.04434
local descriptor learninggradient modulationtriplet lossstatistical characteristics+3
11
citations
#50

Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance

Dimitris Oikonomou, Nicolas Loizou

ICLR 2025
11
citations
#51

Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models

Zeman Li, Xinwei Zhang, Peilin Zhong et al.

ICLR 2025
11
citations
#52

Cumulative Regret Analysis of the Piyavskii–Shubert Algorithm and Its Variants for Global Optimization

Kaan Gokcesu, Hakan Gökcesu

AAAI 2024arXiv:2108.10859
global optimizationcumulative regret analysislipschitz continuous functionslipschitz smooth functions+4
10
citations
#53

Noise Stability Optimization for Finding Flat Minima: A Hessian-based Regularization Approach

Haotian Ju, Hongyang Zhang, Dongyue Li

ICLR 2025
10
citations
#54

On the Crucial Role of Initialization for Matrix Factorization

Bingcong Li, Liang Zhang, Aryan Mokhtari et al.

ICLR 2025
10
citations
#55

Momentum-SAM: Sharpness Aware Minimization without Computational Overhead

Marlon Becker, Frederick Altrock, Benjamin Risse

NeurIPS 2025
10
citations
#56

Sharpness-Aware Minimization Enhances Feature Quality via Balanced Learning

Jacob Springer, Vaishnavh Nagarajan, Aditi Raghunathan

ICLR 2024
10
citations
#57

Variational Inference for SDEs Driven by Fractional Noise

Rembert Daems, Manfred Opper, Guillaume Crevecoeur et al.

ICLR 2024
10
citations
#58

Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization

Anthony Bardou, Patrick Thiran, Thomas Begin

ICLR 2024
10
citations
#59

The Optimization Landscape of SGD Across the Feature Learning Strength

Alexander Atanasov, Alexandru Meterez, James Simon et al.

ICLR 2025
10
citations
#60

Training-Free Guidance Beyond Differentiability: Scalable Path Steering with Tree Search in Diffusion and Flow Models

Yingqing Guo, Yukang Yang, Hui Yuan et al.

NeurIPS 2025
10
citations
#61

Neural structure learning with stochastic differential equations

Benjie Wang, Joel Jennings, Wenbo Gong

ICLR 2024
9
citations
#62

Improved Active Learning via Dependent Leverage Score Sampling

Atsushi Shimizu, Xiaoou Cheng, Christopher Musco et al.

ICLR 2024
9
citations
#63

Transition Path Sampling with Improved Off-Policy Training of Diffusion Path Samplers

Kiyoung Seong, Seonghyun Park, Seonghwan Kim et al.

ICLR 2025arXiv:2405.19961
transition path samplingdiffusion path samplerscollective variablesmolecular dynamics simulations+4
9
citations
#64

Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization

Xi Lin, Yilu Liu, Xiaoyuan Zhang et al.

ICLR 2025
9
citations
#65

InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment

Yunhong Lu, Qichao Wang, Hengyuan Cao et al.

CVPR 2025
9
citations
#66

Efficient Alternating Minimization with Applications to Weighted Low Rank Approximation

Zhao Song, Mingquan Ye, Junze Yin et al.

ICLR 2025arXiv:2306.04169
weighted low rank approximationalternating minimizationmatrix completionhadamard product+2
9
citations
#67

On the Optimization and Generalization of Two-layer Transformers with Sign Gradient Descent

Bingrui Li, Wei Huang, Andi Han et al.

ICLR 2025
9
citations
#68

Deep Nonlinear Sufficient Dimension Reduction

Yinfeng Chen, Yuling Jiao, Rui Qiu et al.

NeurIPS 2025
9
citations
#69

Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics

Omar Chehab, Anna Korba, Austin Stromme et al.

ICLR 2025
9
citations
#70

DGPO: Discovering Multiple Strategies with Diversity-Guided Policy Optimization

Wenze Chen, Shiyu Huang, Yuan Chiang et al.

AAAI 2024arXiv:2207.05631
reinforcement learningdiverse strategy discoverypolicy optimizationinformation-theoretic diversity+3
9
citations
#71

Pareto Front-Diverse Batch Multi-Objective Bayesian Optimization

Alaleh Ahmadianshalchi, Syrine Belakaria, Janardhan Rao Doppa

AAAI 2024arXiv:2406.08799
multi-objective optimizationbayesian optimizationacquisition function selectionbatch selection+3
9
citations
#72

Implicit Bias of Spectral Descent and Muon on Multiclass Separable Data

Chen Fan, Mark Schmidt, Christos Thrampoulidis

NeurIPS 2025
8
citations
#73

Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function

Maria-Florina Balcan, Anh Nguyen, Dravyansh Sharma

NeurIPS 2025
8
citations
#74

Learning Semantic Latent Directions for Accurate and Controllable Human Motion Prediction

Guowei Xu, Jiale Tao, Wen Li et al.

ECCV 2024
8
citations
#75

Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift

Seongho Son, William Bankes, Sayak Ray Chowdhury et al.

ICML 2025
8
citations
#76

Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments

Yun Qu, Cheems Wang, Yixiu Mao et al.

ICML 2025
8
citations
#77

Offline-to-Online Hyperparameter Transfer for Stochastic Bandits

Dravyansh Sharma, Arun Suggala

AAAI 2025
8
citations
#78

DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation

Wenliang Zhao, Haolin Wang, Jie Zhou et al.

ECCV 2024arXiv:2409.03755
diffusion probabilistic modelspredictor-corrector samplerssampling efficiencyclassifier-free guidance+3
8
citations
#79

Colored Noise in PPO: Improved Exploration and Performance through Correlated Action Sampling

Jakob Hollenstein, Georg Martius, Justus Piater

AAAI 2024arXiv:2312.11091
proximal policy optimizationcolored noiseaction samplingexploration strategies+3
8
citations
#80

Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods

Avery Ma, Yangchen Pan, Amir-massoud Farahmand

ICLR 2024
8
citations
#81

Sharpness-Aware Minimization: General Analysis and Improved Rates

Dimitris Oikonomou, Nicolas Loizou

ICLR 2025
8
citations
#82

Improved Metric Distortion via Threshold Approvals

Elliot Anshelevich, Aris Filos-Ratsikas, Christopher Jerrett et al.

AAAI 2024arXiv:2305.14024
metric distortionsocial choice theoryapproval votingdeterministic mechanisms+4
8
citations
#83

DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization

Gang Li, Ming Lin, Tomer Galanti et al.

NeurIPS 2025
8
citations
#84

On the Limitations of Temperature Scaling for Distributions with Overlaps

Muthu Chidambaram, Rong Ge

ICLR 2024
8
citations
#85

Second Order Bounds for Contextual Bandits with Function Approximation

Aldo Pacchiano

ICLR 2025
7
citations
#86

POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality

Joey Wilson, Marcelino M. de Almeida, Sachit Mahajan et al.

CVPR 2025
7
citations
#87

Decision Tree Induction Through LLMs via Semantically-Aware Evolution

Tennison Liu, Nicolas Huynh, Mihaela van der Schaar

ICLR 2025
7
citations
#88

Universal generalization guarantees for Wasserstein distributionally robust models

Tam Le, Jerome Malick

ICLR 2025arXiv:2402.11981
distributionally robust optimizationwasserstein distancegeneralization guaranteesparametric loss functions+3
7
citations
#89

Error Bounds for Gaussian Process Regression Under Bounded Support Noise with Applications to Safety Certification

Robert Reed, Luca Laurenti, Morteza Lahijanian

AAAI 2025
7
citations
#90

Robust and Conjugate Spatio-Temporal Gaussian Processes

William Laplante, Matias Altamirano, Andrew Duncan et al.

ICML 2025
7
citations
#91

Finite-Sample Analysis of Policy Evaluation for Robust Average Reward Reinforcement Learning

Yang Xu, Washim Mondal, Vaneet Aggarwal

NeurIPS 2025
7
citations
#92

Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity

Artavazd Maranjyan, Alexander Tyurin, Peter Richtarik

ICML 2025
7
citations
#93

Two-timescale Extragradient for Finding Local Minimax Points

Jiseok Chae, Kyuwon Kim, Donghwan Kim

ICLR 2024
7
citations
#94

Accelerated Convergence of Stochastic Heavy Ball Method under Anisotropic Gradient Noise

Rui Pan, Yuxing Liu, Xiaoyu Wang et al.

ICLR 2024
7
citations
#95

Regret Analysis of Repeated Delegated Choice

Suho Shin, Keivan Rezaei, Mohammad Hajiaghayi et al.

AAAI 2024arXiv:2310.04884
repeated delegated choiceonline learning variantregret analysisstrategic agent behavior+4
7
citations
#96

Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum

SARIT KHIRIRAT, Abdurakhmon Sadiev, Artem Riabinin et al.

NeurIPS 2025
7
citations
#97

Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models

Bingdong Li, Zixiang Di, Yongfan Lu et al.

AAAI 2025
7
citations
#98

Last-Iterate Convergence Properties of Regret-Matching Algorithms in Games

Yang Cai, Gabriele Farina, Julien Grand-Clément et al.

ICLR 2025
7
citations
#99

Stochastic Online Instrumental Variable Regression: Regrets for Endogeneity and Bandit Feedback

Riccardo Della Vecchia, Debabrota Basu

AAAI 2025
7
citations
#100

Stochastic Semi-Gradient Descent for Learning Mean Field Games with Population-Aware Function Approximation

Chenyu Zhang, Xu Chen, Xuan Di

ICLR 2025
7
citations