"transfer learning" Papers

34 篇论文

Implicit In-context Learning

Zhuowei Li, Zihao Xu, Ligong Han et al.

ICLR 2025posterarXiv:2405.14660
8
citations

Meta-learning how to Share Credit among Macro-Actions

Ionel-Alexandru Hosu, Traian Rebedea, Razvan Pascanu

NeurIPS 2025oralarXiv:2506.13690

On Transferring Transferability: Towards a Theory for Size Generalization

Eitan Levin, Yuxin Ma, Mateo Diaz et al.

NeurIPS 2025spotlightarXiv:2505.23599
2
citations

Rethinking Hebbian Principle: Low-Dimensional Structural Projection for Unsupervised Learning

Shikuang Deng, Jiayuan Zhang, Yuhang Wu et al.

NeurIPS 2025posterarXiv:2510.14810

Reward-Aware Proto-Representations in Reinforcement Learning

Hon Tik Tse, Siddarth Chandrasekar, Marlos C. Machado

NeurIPS 2025oralarXiv:2505.16217
1
citations

${\rm E}(3)$-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning

Dingyang Chen, Qi Zhang

ICML 2024poster

Bridging Data Gaps in Diffusion Models with Adversarial Noise-Based Transfer Learning

Xiyu Wang, Baijiong Lin, Daochang Liu et al.

ICML 2024spotlight

CARTE: Pretraining and Transfer for Tabular Learning

Myung Jun Kim, Leo Grinsztajn, Gael Varoquaux

ICML 2024poster

Contextual Pre-planning on Reward Machine Abstractions for Enhanced Transfer in Deep Reinforcement Learning

Guy Azran, Mohamad H Danesh, Stefano Albrecht et al.

AAAI 2024paperarXiv:2307.05209

Cooperative Knowledge Distillation: A Learner Agnostic Approach

Michael Livanos, Ian Davidson, Stephen Wong

AAAI 2024paperarXiv:2402.05942
1
citations

DNA-SE: Towards Deep Neural-Nets Assisted Semiparametric Estimation

Qinshuo Liu, Zixin Wang, Xi'an Li et al.

ICML 2024poster

Encodings for Prediction-based Neural Architecture Search

Yash Akhauri, Mohamed Abdelfattah

ICML 2024poster

Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models

Francesca-Zhoufan Li, Ava Amini, Yisong Yue et al.

ICML 2024poster

FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local Parameter Sharing

Yongzhe Jia, Xuyun Zhang, Amin Beheshti et al.

AAAI 2024paperarXiv:2402.08578
10
citations

Fine-Tuning Graph Neural Networks by Preserving Graph Generative Patterns

Yifei Sun, Qi Zhu, Yang Yang et al.

AAAI 2024paperarXiv:2312.13583

Fine-tuning Reinforcement Learning Models is Secretly a Forgetting Mitigation Problem

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski et al.

ICML 2024spotlight

Forget Sharpness: Perturbed Forgetting of Model Biases Within SAM Dynamics

Ankit Vani, Frederick Tung, Gabriel Oliveira et al.

ICML 2024poster

Graph Positional and Structural Encoder

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné et al.

ICML 2024poster

Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples

Thomas T. Zhang, Bruce Lee, Ingvar Ziemann et al.

ICML 2024poster

Is Inverse Reinforcement Learning Harder than Standard Reinforcement Learning? A Theoretical Perspective

Lei Zhao, Mengdi Wang, Yu Bai

ICML 2024poster

Learning from Memory: Non-Parametric Memory Augmented Self-Supervised Learning of Visual Features

Thalles Silva, Helio Pedrini, Adín Ramírez Rivera

ICML 2024poster

LION: Implicit Vision Prompt Tuning

Haixin Wang, Jianlong Chang, Yihang Zhai et al.

AAAI 2024paperarXiv:2303.09992
35
citations

Matrix Information Theory for Self-Supervised Learning

Yifan Zhang, Zhiquan Tan, Jingqin Yang et al.

ICML 2024poster

MF-CLR: Multi-Frequency Contrastive Learning Representation for Time Series

Jufang Duan, Wei Zheng, Yangzhou Du et al.

ICML 2024poster

Minimum-Norm Interpolation Under Covariate Shift

Neil Mallinar, Austin Zane, Spencer Frei et al.

ICML 2024poster
12
citations

One Self-Configurable Model to Solve Many Abstract Visual Reasoning Problems

Mikołaj Małkiński, Jacek Mańdziuk

AAAI 2024paperarXiv:2312.09997

On Hypothesis Transfer Learning of Functional Linear Models

Haotian Lin, Matthew Reimherr

ICML 2024poster

Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining

Florian Tramer, Gautam Kamath, Nicholas Carlini

ICML 2024poster

Position: Will we run out of data? Limits of LLM scaling based on human-generated data

Pablo Villalobos, Anson Ho, Jaime Sevilla et al.

ICML 2024poster

SCD-Net: Spatiotemporal Clues Disentanglement Network for Self-Supervised Skeleton-Based Action Recognition

Cong Wu, Xiao-Jun Wu, Josef Kittler et al.

AAAI 2024paperarXiv:2309.05834
24
citations

To Supervise or Not to Supervise: Understanding and Addressing the Key Challenges of Point Cloud Transfer Learning

Souhail Hadgi, Lei Li, Maks Ovsjanikov

ECCV 2024posterarXiv:2403.17869

Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers

Md Shamim Hussain, Mohammed Zaki, Dharmashankar Subramanian

ICML 2024poster

Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts

Shengzhuang Chen, Jihoon Tack, Yunqiao Yang et al.

ICML 2024poster

When is Transfer Learning Possible?

My Phan, Kianté Brantley, Stephanie Milani et al.

ICML 2024poster