"representation learning" Papers

64 篇论文 • 第 1 页,共 2 页

$\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs

Vlad Sobal, Mark Ibrahim, Randall Balestriero et al.

ICLR 2025posterarXiv:2407.18134
12
citations

AmorLIP: Efficient Language-Image Pretraining via Amortization

Haotian Sun, Yitong Li, Yuchen Zhuang et al.

NeurIPS 2025posterarXiv:2505.18983
2
citations

A Statistical Theory of Contrastive Learning via Approximate Sufficient Statistics

Licong Lin, Song Mei

NeurIPS 2025posterarXiv:2503.17538
3
citations

Deep Kernel Posterior Learning under Infinite Variance Prior Weights

Jorge Loría, Anindya Bhadra

ICLR 2025posterarXiv:2410.01284

Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax

Ivan Butakov, Alexander Semenenko, Alexander Tolmachev et al.

ICLR 2025posterarXiv:2410.06993
2
citations

How Classifier Features Transfer to Downstream: An Asymptotic Analysis in a Two-Layer Model

HEE BIN YOO, Sungyoon Lee, Cheongjae Jang et al.

NeurIPS 2025poster

How Far Are We from True Unlearnability?

Kai Ye, Liangcai Su, Chenxiong Qian

ICLR 2025posterarXiv:2509.08058
4
citations

OGBench: Benchmarking Offline Goal-Conditioned RL

Seohong Park, Kevin Frans, Benjamin Eysenbach et al.

ICLR 2025posterarXiv:2410.20092
74
citations

On the creation of narrow AI: hierarchy and nonlocality of neural network skills

Eric Michaud, Asher Parker-Sartori, Max Tegmark

NeurIPS 2025posterarXiv:2505.15811
2
citations

On the Feature Learning in Diffusion Models

Andi Han, Wei Huang, Yuan Cao et al.

ICLR 2025posterarXiv:2412.01021
13
citations

Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models

Young Kyun Jang, Ser-Nam Lim

ICCV 2025posterarXiv:2405.14715
2
citations

T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning

Julie Mordacq, David Loiseaux, Vicky Kalogeiton et al.

NeurIPS 2025spotlightarXiv:2510.23484

Vision‑Language‑Vision Auto‑Encoder: Scalable Knowledge Distillation from Diffusion Models

Tiezheng Zhang, Yitong Li, Yu-Cheng Chou et al.

NeurIPS 2025posterarXiv:2507.07104
2
citations

Adaptive Discovering and Merging for Incremental Novel Class Discovery

Guangyao Chen, Peixi Peng, Yangru Huang et al.

AAAI 2024paperarXiv:2403.03382

A Global Geometric Analysis of Maximal Coding Rate Reduction

Peng Wang, Huikang Liu, Druv Pai et al.

ICML 2024poster

An Unsupervised Approach for Periodic Source Detection in Time Series

Berken Utku Demirel, Christian Holz

ICML 2024poster

Autoencoding Conditional Neural Processes for Representation Learning

Victor Prokhorov, Ivan Titov, Siddharth N

ICML 2024poster

BaCon: Boosting Imbalanced Semi-supervised Learning via Balanced Feature-Level Contrastive Learning

Qianhan Feng, Lujing Xie, Shijie Fang et al.

AAAI 2024paperarXiv:2403.12986
15
citations

BeigeMaps: Behavioral Eigenmaps for Reinforcement Learning from Images

Sandesh Adhikary, Anqi Li, Byron Boots

ICML 2024oral

Beyond Prototypes: Semantic Anchor Regularization for Better Representation Learning

Yanqi Ge, Qiang Nie, Ye Huang et al.

AAAI 2024paperarXiv:2312.11872
13
citations

Binning as a Pretext Task: Improving Self-Supervised Learning in Tabular Domains

Kyungeun Lee, Ye Seul Sim, Hye-Seung Cho et al.

ICML 2024poster

Bridging Mini-Batch and Asymptotic Analysis in Contrastive Learning: From InfoNCE to Kernel-Based Losses

Panagiotis Koromilas, Giorgos Bouritsas, Theodoros Giannakopoulos et al.

ICML 2024poster

Contrastive Continual Learning with Importance Sampling and Prototype-Instance Relation Distillation

Jiyong Li, Dilshod Azizov, Yang LI et al.

AAAI 2024paperarXiv:2403.04599

Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources

Xia, Jonathan Wilson, Benjamin Goldstein et al.

ICML 2024poster

Cross-Domain Policy Adaptation by Capturing Representation Mismatch

Jiafei Lyu, Chenjia Bai, Jing-Wen Yang et al.

ICML 2024poster

Data-to-Model Distillation: Data-Efficient Learning Framework

Ahmad Sajedi, Samir Khaki, Lucy Z. Liu et al.

ECCV 2024posterarXiv:2411.12841
3
citations

Deep Regression Representation Learning with Topology

Shihao Zhang, Kenji Kawaguchi, Angela Yao

ICML 2024poster

Differentially Private Representation Learning via Image Captioning

Tom Sander, Yaodong Yu, Maziar Sanjabi et al.

ICML 2024poster

Diffusion Language Models Are Versatile Protein Learners

Xinyou Wang, Zaixiang Zheng, Fei YE et al.

ICML 2024poster

Distribution Alignment Optimization through Neural Collapse for Long-tailed Classification

Jintong Gao, He Zhao, Dandan Guo et al.

ICML 2024poster

DySeT: a Dynamic Masked Self-distillation Approach for Robust Trajectory Prediction

MOZHGAN POURKESHAVARZ, Arielle Zhang, Amir Rasouli

ECCV 2024poster
7
citations

Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders

Lucas Stoffl, Andy Bonnetto, Stéphane D'Ascoli et al.

ECCV 2024poster
7
citations

Enhancing Trajectory Prediction through Self-Supervised Waypoint Distortion Prediction

Pranav Singh Chib, Pravendra Singh

ICML 2024oral

Exploring Diverse Representations for Open Set Recognition

Yu Wang, Junxian Mu, Pengfei Zhu et al.

AAAI 2024paperarXiv:2401.06521
18
citations

Fast and Sample Efficient Multi-Task Representation Learning in Stochastic Contextual Bandits

Jiabin Lin, Shana Moothedath, Namrata Vaswani

ICML 2024poster

Feasibility Consistent Representation Learning for Safe Reinforcement Learning

Zhepeng Cen, Yihang Yao, Zuxin Liu et al.

ICML 2024poster

Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize

Tianren Zhang, Chujie Zhao, Guanyu Chen et al.

ICML 2024poster

FedSC: Provable Federated Self-supervised Learning with Spectral Contrastive Objective over Non-i.i.d. Data

Shusen Jing, Anlan Yu, Shuai Zhang et al.

ICML 2024poster

Graph2Tac: Online Representation Learning of Formal Math Concepts

Lasse Blaauwbroek, Mirek Olšák, Jason Rute et al.

ICML 2024poster

How Learning by Reconstruction Produces Uninformative Features For Perception

Randall Balestriero, Yann LeCun

ICML 2024poster

InterLUDE: Interactions between Labeled and Unlabeled Data to Enhance Semi-Supervised Learning

Zhe Huang, Xiaowei Yu, Dajiang Zhu et al.

ICML 2024poster

Isometric Representation Learning for Disentangled Latent Space of Diffusion Models

Jaehoon Hahm, Junho Lee, Sunghyun Kim et al.

ICML 2024poster

Learning Shadow Variable Representation for Treatment Effect Estimation under Collider Bias

Baohong Li, Haoxuan Li, Ruoxuan Xiong et al.

ICML 2024poster

LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views

Yuji Roh, Qingyun Liu, Huan Gui et al.

ICML 2024poster

Matrix Information Theory for Self-Supervised Learning

Yifan Zhang, Zhiquan Tan, Jingqin Yang et al.

ICML 2024poster

MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

Hongduan Tian, Feng Liu, Tongliang Liu et al.

ICML 2024poster

Neural Causal Abstractions

Kevin Xia, Elias Bareinboim

AAAI 2024paperarXiv:2401.02602
12
citations

Neural Collapse meets Differential Privacy: Curious behaviors of NoisyGD with Near-Perfect Representation Learning

Chendi Wang, Yuqing Zhu, Weijie Su et al.

ICML 2024poster

Non-parametric Representation Learning with Kernels

Hebaixu Wang, Meiqi Gong, Xiaoguang Mei et al.

AAAI 2024paperarXiv:2309.02028
11
citations

Overcoming Data and Model heterogeneities in Decentralized Federated Learning via Synthetic Anchors

Chun-Yin Huang, Kartik Srinivas, Xin Zhang et al.

ICML 2024poster
← PreviousNext →