HoliTracer: Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery

1
Citations
#597
in ICCV 2025
of 2701 papers
5
Authors
4
Data Points

Abstract

With the increasing resolution of remote sensing imagery (RSI), large-size RSI has emerged as a vital data source for high-precision vector mapping of geographic objects. Existing methods are typically constrained to processing small image patches, which often leads to the loss of contextual information and produces fragmented vector outputs. To address these, this paper introduces HoliTracer, the first framework designed to holistically extract vectorized geographic objects from large-size RSI. In HoliTracer, we enhance segmentation of large-size RSI using the Context Attention Net (CAN), which employs a local-to-global attention mechanism to capture contextual dependencies. Furthermore, we achieve holistic vectorization through a robust pipeline that leverages the Mask Contour Reformer (MCR) to reconstruct polygons and the Polygon Sequence Tracer (PST) to trace vertices. Extensive experiments on large-size RSI datasets, including buildings, water bodies, and roads, demonstrate that HoliTracer outperforms state-of-the-art methods. Our code and data are available in https://github.com/vvangfaye/HoliTracer.

Citation History

Jan 26, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Feb 2, 2026
1+1