Learning Likelihood-Free Reference Priors

1citations
1
Citations
#623
in ICML 2025
of 3340 papers
5
Authors
1
Data Points

Abstract

Simulation modeling offers a flexible approach to constructing high-fidelity synthetic representations of complex real-world systems. However, the increased complexity of such models introduces additional complications, for example when carrying out statistical inference procedures. This has motivated a large and growing literature onlikelihood-freeorsimulation-basedinference methods, which approximate (e.g., Bayesian) inference without assuming access to the simulator's intractable likelihood function. A hitherto neglected problem in the simulation-based Bayesian inference literature is the challenge of constructing minimally informativereference priorsfor complex simulation models. Such priors maximise an expected Kullback-Leibler distance from the prior to the posterior, thereby influencing posterior inferences minimally and enabling an ``objective'' approach to Bayesian inference that does not necessitate the incorporation of strong subjective prior beliefs. In this paper, we propose and test a selection of likelihood-free methods for learning reference priors for simulation models, using variational approximations to these priors and a variety of mutual information estimators. Our experiments demonstrate that good approximations to reference priors for simulation models are in this way attainable, providing a first step towards the development of likelihood-free objective Bayesian inference procedures.

Citation History

Jan 28, 2026
1