Minimax Optimal Reinforcement Learning with Quasi-Optimism

1citations
1
Citations
#1675
in ICLR 2025
of 3827 papers
2
Authors
1
Data Points

Abstract

In our quest for a reinforcement learning (RL) algorithm that is both practical and provably optimal, we introduce EQO (Exploration via Quasi-Optimism). Unlike existing minimax optimal approaches, EQO avoids reliance on empirical variances and employs a simple bonus term proportional to the inverse of the state-action visit count. Central to EQO is the concept ofquasi-optimism, where estimated values need not be fully optimistic, allowing for a simpler yet effective exploration strategy. The algorithm achieves the sharpest known regret bound for tabular RL under the mildest assumptions, proving that fast convergence can be attained with a practical and computationally efficient approach. Empirical evaluations demonstrate that EQO consistently outperforms existing algorithms in both regret performance and computational efficiency, providing the best of both theoretical soundness and practical effectiveness.

Citation History

Jan 25, 2026
1