Understanding and Improving Adversarial Robustness of Neural Probabilistic Circuits

0citations
Project
0
Citations
#1667
in NeurIPS 2025
of 5858 papers
2
Authors
3
Data Points

Abstract

Neural Probabilistic Circuits (NPCs), a new class of concept bottleneck models, comprise an attribute recognition model and a probabilistic circuit for reasoning. By integrating the outputs from these two modules, NPCs produce compositional and interpretable predictions. While offering enhanced interpretability and high performance on downstream tasks, the neural-network-based attribute recognition model remains a black box. This vulnerability allows adversarial attacks to manipulate attribute predictions by introducing carefully crafted subtle perturbations to input images, potentially compromising the final predictions. In this paper, we theoretically analyze the adversarial robustness of NPC and demonstrate that it only depends on the robustness of the attribute recognition model and is independent of the robustness of the probabilistic circuit. Moreover, we propose RNPC, the first robust neural probabilistic circuit against adversarial attacks on the recognition module. RNPC introduces a novel class-wise integration for inference, ensuring a robust combination of outputs from the two modules. Our theoretical analysis demonstrates that RNPC exhibits provably improved adversarial robustness compared to NPC. Empirical results on image classification tasks show that RNPC achieves superior adversarial robustness compared to existing concept bottleneck models while maintaining high accuracy on benign inputs. The code is available at https://github.com/uiuctml/RNPC.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0