Riemannian Consistency Model

0citations
Project
0
Citations
#1691
in NeurIPS 2025
of 5858 papers
6
Authors
3
Data Points

Abstract

Consistency models are a class of generative models that enable few-step generation for diffusion and flow matching models. While consistency models have achieved promising results on Euclidean domains like images, their applications to Riemannian manifolds remain challenging due to the curved geometry. In this work, we propose the Riemannian Consistency Model (RCM), which, for the first time, enables few-step consistency modeling while respecting the intrinsic manifold constraint imposed by the Riemannian geometry. Leveraging the covariant derivative and exponential-map-based parameterization, we derive the closed-form solutions for both discrete- and continuous-time training objectives for RCM. We then demonstrate theoretical equivalence between the two variants of RCM: Riemannian consistency distillation (RCD) that relies on a teacher model to approximate the marginal vector field, and Riemannian consistency training (RCT) that utilizes the conditional vector field for training. We further propose a simplified training objective that eliminates the need for the complicated differential calculation. Finally, we provide a unique kinematics perspective for interpreting the RCM objective, offering new theoretical angles. Through extensive experiments, we manifest the superior generative quality of RCM in few-step generation on various non-Euclidean manifolds, including flat-tori, spheres, and the 3D rotation group SO(3), spanning a variety of crucial real-world applications such as RNA and protein generation.

Citation History

Jan 26, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0