🧬Efficiency

Federated Learning

Decentralized learning across devices

420 papers(showing top 100)1,272 total citations
Compare with other topics
Mar '24 Feb '26341 papers
Also includes: federated learning, federated, distributed learning, privacy-preserving learning, data heterogeneity

Top Papers

#1

FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning

Haokun Chen, Yao Zhang, Denis Krompass et al.

AAAI 2024arXiv:2308.12305
federated learningfoundation model finetuningmulti-modal learningparameter-efficient finetuning+4
86
citations
#2

FedASMU: Efficient Asynchronous Federated Learning with Dynamic Staleness-Aware Model Update

Ji Liu, Juncheng Jia, Tianshi Che et al.

AAAI 2024arXiv:2312.05770
federated learningasynchronous trainingstatistical heterogeneitysystem heterogeneity+4
71
citations
#3

FedAS: Bridging Inconsistency in Personalized Federated Learning

Xiyuan Yang, Wenke Huang, Mang Ye

CVPR 2024
57
citations
#4

Fair Federated Learning under Domain Skew with Local Consistency and Domain Diversity

Yuhang Chen, Wenke Huang, Mang Ye

CVPR 2024arXiv:2405.16585
43
citations
#5

Selective Aggregation for Low-Rank Adaptation in Federated Learning

Pengxin Guo, Shuang Zeng, Yanran Wang et al.

ICLR 2025
43
citations
#6

Federated Adaptive Prompt Tuning for Multi-Domain Collaborative Learning

Shangchao Su, Mingzhao Yang, Bin Li et al.

AAAI 2024arXiv:2211.07864
federated learningprompt tuningmulti-domain learningadaptive networks+4
37
citations
#7

Communication-Efficient Federated Learning with Accelerated Client Gradient

Geeho Kim, Jinkyu Kim, Bohyung Han

CVPR 2024arXiv:2201.03172
36
citations
#8

Towards Efficient Replay in Federated Incremental Learning

Yichen Li, Qunwei Li, Haozhao Wang et al.

CVPR 2024arXiv:2403.05890
36
citations
#9

FedSelect: Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning

Rishub Tamirisa, Chulin Xie, Wenxuan Bao et al.

CVPR 2024arXiv:2404.02478
36
citations
#10

Exploiting Label Skews in Federated Learning with Model Concatenation

Yiqun Diao, Qinbin Li, Bingsheng He

AAAI 2024arXiv:2312.06290
federated learninglabel skewsmodel concatenationnon-iid data+3
35
citations
#11

Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning

Chenyu Zhang, Han Wang, Aritra Mitra et al.

ICLR 2024arXiv:2401.15273
31
citations
#12

Fair and Efficient Contribution Valuation for Vertical Federated Learning

Zhenan Fan, Huang Fang, Xinglu Wang et al.

ICLR 2024arXiv:2201.02658
31
citations
#13

Personalized Federated Domain-Incremental Learning based on Adaptive Knowledge Matching

Yichen Li, Wenchao Xu, Haozhao Wang et al.

ECCV 2024arXiv:2407.05005
federated learningdomain-incremental learningknowledge matchingpersonalized federated learning+4
28
citations
#14

Backdoor Federated Learning by Poisoning Backdoor-Critical Layers

Haomin Zhuang, Mingxian Yu, Hao Wang et al.

ICLR 2024arXiv:2308.04466
27
citations
#15

Asynchronous Federated Reinforcement Learning with Policy Gradient Updates: Algorithm Design and Convergence Analysis

Guangchen (Eric) Lan, Dong-Jun Han, Abolfazl Hashemi et al.

ICLR 2025
23
citations
#16

Unlocking the Potential of Prompt-Tuning in Bridging Generalized and Personalized Federated Learning

wenlong deng, Christos Thrampoulidis, Xiaoxiao Li

CVPR 2024arXiv:2310.18285
20
citations
#17

Improving Plasticity in Online Continual Learning via Collaborative Learning

Maorong Wang, Nicolas Michel, Ling Xiao et al.

CVPR 2024arXiv:2312.00600
20
citations
#18

PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees

Chulin Xie, De-An Huang, Wenda Chu et al.

CVPR 2024arXiv:2302.06637
20
citations
#19

An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side Pre-trained Generator to Clients in Heterogeneous Federated Learning

Jianqing Zhang, Yang Liu, Yang Hua et al.

CVPR 2024arXiv:2403.15760
20
citations
#20

Federated Learning with Extremely Noisy Clients via Negative Distillation

Yang Lu, Lin Chen, Yonggang Zhang et al.

AAAI 2024arXiv:2312.12703
federated learningnoisy label correctionknowledge distillationnegative distillation+4
20
citations
#21

FedFixer: Mitigating Heterogeneous Label Noise in Federated Learning

Xinyuan Ji, Zhaowei Zhu, Wei Xi et al.

AAAI 2024arXiv:2403.16561
federated learninglabel noiseheterogeneous datanoisy label learning+3
19
citations
#22

Federated Q-Learning: Linear Regret Speedup with Low Communication Cost

Zhong Zheng, Fengyu Gao, Lingzhou Xue et al.

ICLR 2024arXiv:2312.15023
19
citations
#23

Mixed-Precision Quantization for Federated Learning on Resource-Constrained Heterogeneous Devices

Huancheng Chen, Haris Vikalo

CVPR 2024arXiv:2311.18129
19
citations
#24

Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning

Jinglin Liang, Jin Zhong, Hanlin Gu et al.

ECCV 2024arXiv:2409.01128
federated continual learningcatastrophic forgettingdiffusion modelsdata replay+4
19
citations
#25

PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning

Haiyang Guo, Fei Zhu, Wenzhuo Liu et al.

ECCV 2024
18
citations
#26

Cloud-Device Collaborative Learning for Multimodal Large Language Models

Guanqun Wang, Jiaming Liu, Chenxuan Li et al.

CVPR 2024arXiv:2312.16279
18
citations
#27

Text-Enhanced Data-free Approach for Federated Class-Incremental Learning

Minh-Tuan Tran, Trung Le, Xuan-May Le et al.

CVPR 2024arXiv:2403.14101
18
citations
#28

Benchmarking Algorithms for Federated Domain Generalization

Ruqi Bai, Saurabh Bagchi, David Inouye

ICLR 2024arXiv:2307.04942
18
citations
#29

Data Valuation and Detections in Federated Learning

Wenqian Li, Shuran Fu, Fengrui Zhang et al.

CVPR 2024arXiv:2311.05304
17
citations
#30

Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization

Khiem Le, Tuan Long Ho, Cuong Do et al.

CVPR 2024arXiv:2403.15605
16
citations
#31

Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators

Sikai Bai, Shuaicheng Li, Weiming Zhuang et al.

AAAI 2024arXiv:2307.05358
federated semi-supervised learningdata distribution heterogeneitybi-level optimizationclient model regularization+4
15
citations
#32

Federated Unlearning with Gradient Descent and Conflict Mitigation

Zibin Pan, Zhichao Wang, Chi Li et al.

AAAI 2025arXiv:2412.20200
14
citations
#33

Towards Fair Graph Federated Learning via Incentive Mechanisms

12794 Chenglu Pan, Jiarong Xu, Yue Yu et al.

AAAI 2024arXiv:2312.13306
graph federated learningincentive mechanismsagent valuationgradient alignment+4
14
citations
#34

Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth and Data Heterogeneity

Yiyue Chen, Haris Vikalo, Chianing Wang

AAAI 2024arXiv:2312.13380
federated learningquantizationself-supervised learningdata heterogeneity+4
13
citations
#35

FedLoGe: Joint Local and Generic Federated Learning under Long-tailed Data

Zikai Xiao, Zihan Chen, Liyinglan Liu et al.

ICLR 2024arXiv:2401.08977
13
citations
#36

Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts

Kun Jin, Tongxin Yin, Zhongzhu Chen et al.

AAAI 2024arXiv:2305.05090
federated learningdistribution shift mappingsperformative predictionmodel-dependent data shift+3
12
citations
#37

BAFFLE: A Baseline of Backpropagation-Free Federated Learning

Haozhe Feng, Tianyu Pang, Chao Du et al.

ECCV 2024
12
citations
#38

NoT: Federated Unlearning via Weight Negation

Yasser Khalil, Leo Maxime Brunswic, Soufiane Lamghari et al.

CVPR 2025arXiv:2503.05657
federated unlearningweight negationmodel perturbationprivacy compliance+3
11
citations
#39

Knowledge-Aware Parameter Coaching for Personalized Federated Learning

Mingjian Zhi, Yuanguo Bi, Wenchao Xu et al.

AAAI 2024
11
citations
#40

Federated Learning with Sample-level Client Drift Mitigation

Haoran Xu, Jiaze Li, Wanyi Wu et al.

AAAI 2025arXiv:2501.11360
11
citations
#41

FedLF: Layer-Wise Fair Federated Learning

Zibin Pan, Chi Li, Fangchen Yu et al.

AAAI 2024
10
citations
#42

FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local Parameter Sharing

Yongzhe Jia, Xuyun Zhang, Amin Beheshti et al.

AAAI 2024arXiv:2402.08578
federated learningedge computingparameter sharingmodel pruning+4
10
citations
#43

FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning

Gongxi Zhu, Donghao Li, Hanlin Gu et al.

CVPR 2025
10
citations
#44

Energy-based Backdoor Defense Against Federated Graph Learning

Guancheng Wan, Zitong Shi, Wenke Huang et al.

ICLR 2025
9
citations
#45

Multi-Dimensional Fair Federated Learning

Cong Su, Guoxian Yu, Jun Wang et al.

AAAI 2024arXiv:2312.05551
federated learninggroup fairnessclient fairnessdifferential multipliers+3
9
citations
#46

A Primal-Dual Algorithm for Hybrid Federated Learning

Tom Overman, Garrett Blum, Diego Klabjan

AAAI 2024arXiv:2210.08106
hybrid federated learningfenchel dualityprimal-dual algorithmconvergence analysis+2
9
citations
#47

LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression

Laurent Condat, Artavazd Maranjyan, Peter Richtarik

ICLR 2025
8
citations
#48

Learning Personalized Causally Invariant Representations for Heterogeneous Federated Clients

Xueyang Tang, Song Guo, Jie ZHANG et al.

ICLR 2024
8
citations
#49

AFL: A Single-Round Analytic Approach for Federated Learning with Pre-trained Models

Run He, Kai Tong, Di Fang et al.

CVPR 2025
8
citations
#50

Data Disparity and Temporal Unavailability Aware Asynchronous Federated Learning for Predictive Maintenance on Transportation Fleets

Leonie von Wahl, Niklas Heidenreich, Prasenjit Mitra et al.

AAAI 2024
7
citations
#51

Robust Training of Federated Models with Extremely Label Deficiency

Yonggang Zhang, Zhiqin Yang, Xinmei Tian et al.

ICLR 2024arXiv:2402.14430
7
citations
#52

FedCompetitors: Harmonious Collaboration in Federated Learning with Competing Participants

Shanli Tan, Hao Cheng, Xiaohu Wu et al.

AAAI 2024arXiv:2312.11391
federated learningdata heterogeneitycollaborator selectioncompeting participants+4
6
citations
#53

FedTMOS: Efficient One-Shot Federated Learning with Tsetlin Machine

Shannon How, Jagmohan Chauhan, Geoff Merrett et al.

ICLR 2025
6
citations
#54

Multi-View Collaborative Learning Network for Speech Deepfake Detection

Kuiyuan Zhang, Zhongyun Hua, Rushi Lan et al.

AAAI 2025
5
citations
#55

Federated Partial Label Learning with Local-Adaptive Augmentation and Regularization

Yan Yan, Yuhong Guo

AAAI 2024
5
citations
#56

FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning

Yanbing Zhou, Xiangmou Qu, Chenlong You et al.

AAAI 2025arXiv:2501.05496
5
citations
#57

SuperFedNAS: Cost-Efficient Federated Neural Architecture Search for On-Device Inference

Alind Khare, Animesh Agrawal, Aditya Annavajjala et al.

ECCV 2024arXiv:2301.10879
federated neural architecture searchon-device inferencesupernet trainingmulti-objective federated optimization+3
5
citations
#58

Differentially Private Federated Learning with Time-Adaptive Privacy Spending

Shahrzad Kianidehkordi, Nupur Kulkarni, Adam Dziedzic et al.

ICLR 2025
5
citations
#59

Privacy-Preserving Personalized Federated Prompt Learning for Multimodal Large Language Models

Linh Tran, Wei Sun, Stacy Patterson et al.

ICLR 2025arXiv:2501.13904
federated prompt learningmultimodal large language modelsdifferential privacyvision-language models+3
5
citations
#60

Multiplayer Federated Learning: Reaching Equilibrium with Less Communication

TaeHo Yoon, Sayantan Choudhury, Nicolas Loizou

NeurIPS 2025arXiv:2501.08263
5
citations
#61

Towards Trustworthy Federated Learning with Untrusted Participants

Youssef Allouah, Rachid Guerraoui, John Stephan

ICML 2025arXiv:2505.01874
5
citations
#62

On-Device Collaborative Language Modeling via a Mixture of Generalists and Specialists

Dongyang Fan, Bettina Messmer, Nikita Doikov et al.

ICML 2025arXiv:2409.13931
4
citations
#63

PFedEdit: Personalized Federated Learning via Automated Model Editing

Haolin Yuan, William Paul, John Aucott et al.

ECCV 2024
4
citations
#64

dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis

Luyuan Xie, Tianyu Luan, Wenyuan Cai et al.

CVPR 2025
4
citations
#65

FedTSA: A Cluster-based Two-Stage Aggregation Method for Model-heterogeneous Federated Learning

Boyu Fan, Chenrui Wu, Xiang Su et al.

ECCV 2024arXiv:2407.05098
4
citations
#66

Decentralized Federated Learning with Model Caching on Mobile Agents

Xiaoyu Wang, Guojun Xiong, Houwei Cao et al.

AAAI 2025arXiv:2408.14001
4
citations
#67

Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning

Ximei Wang, Junwei Pan, Xingzhuo Guo et al.

AAAI 2024arXiv:2309.10302
multi-domain learningdataset biasdomain dominationdomain-specific towers+4
4
citations
#68

Unlocking the Potential of Model Calibration in Federated Learning

Yun-Wei Chu, Dong-Jun Han, Seyyedali Hosseinalipour et al.

ICLR 2025
4
citations
#69

Subgraph Federated Learning for Local Generalization

Sungwon Kim, Yoonho Lee, Yunhak Oh et al.

ICLR 2025
4
citations
#70

Towards Robust Parameter-Efficient Fine-Tuning for Federated Learning

Xiuwen Fang, Mang Ye

NeurIPS 2025
4
citations
#71

FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models

Yan Gao, Massimo R. Scamarcia, Javier Fernandez-Marques et al.

NeurIPS 2025arXiv:2506.02961
3
citations
#72

FedCALM: Conflict-aware Layer-wise Mitigation for Selective Aggregation in Deeper Personalized Federated Learning

Hao Zheng, Zhigang Hu, Boyu Wang et al.

CVPR 2025
3
citations
#73

Forgetting Through Transforming: Enabling Federated Unlearning via Class-Aware Representation Transformation

Qi Guo, Zhen Tian, Minghao Yao et al.

ICCV 2025
3
citations
#74

Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Yao Shu, Wenyang Hu, See-Kiong Ng et al.

ICML 2025arXiv:2409.06277
3
citations
#75

Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data from Federated Learning

Joshua C. Zhao, Ahaan Dabholkar, Atul Sharma et al.

CVPR 2024arXiv:2403.18144
3
citations
#76

First-Order Federated Bilevel Learning

Yifan Yang, Peiyao Xiao, Shiqian Ma et al.

AAAI 2025
3
citations
#77

Watch Your Head: Assembling Projection Heads to Save the Reliability of Federated Models

Authors: Jinqian Chen, Jihua Zhu, Qinghai Zheng et al.

AAAI 2024arXiv:2402.16255
federated learningmodel calibrationuncertainty estimationheterogeneous data+4
3
citations
#78

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

Yuchen Liu, Chen Chen, Lingjuan Lyu et al.

AAAI 2025arXiv:2502.04890
3
citations
#79

GAS: Generative Activation-Aided Asynchronous Split Federated Learning

Jiarong Yang, Yuan Liu

AAAI 2025arXiv:2409.01251
3
citations
#80

FedLWS: Federated Learning with Adaptive Layer-wise Weight Shrinking

Changlong Shi, Jinmeng Li, He Zhao et al.

ICLR 2025arXiv:2503.15111
federated learningweighted aggregationlayer-wise optimizationglobal weight shrinking+3
2
citations
#81

On the Byzantine-Resilience of Distillation-Based Federated Learning

Christophe Roux, Max Zimmer, Sebastian Pokutta

ICLR 2025
2
citations
#82

Query-based Knowledge Transfer for Heterogeneous Learning Environments

Norah Alballa, Wenxuan Zhang, Ziquan Liu et al.

ICLR 2025arXiv:2504.09205
knowledge transferheterogeneous learning environmentsfederated learningdecentralized collaborative learning+4
2
citations
#83

SemiDFL: A Semi-Supervised Paradigm for Decentralized Federated Learning

Xinyang Liu, Pengchao Han, Xuan Li et al.

AAAI 2025arXiv:2412.13589
2
citations
#84

EBS-CFL: Efficient and Byzantine-robust Secure Clustered Federated Learning

Zhiqiang Li, Haiyong Bao, Menghong Guan et al.

AAAI 2025arXiv:2506.13612
2
citations
#85

Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness

Haoming Wang, Wei Gao

AAAI 2025arXiv:2309.13536
2
citations
#86

Reinforcement Active Client Selection for Federated Heterogeneous Graph Learning

Jia Wang, Yawen Li, Yingxia Shao et al.

AAAI 2025
2
citations
#87

Handling Spatial-Temporal Data Heterogeneity for Federated Continual Learning via Tail Anchor

Hao Yu, Xin Yang, Le Zhang et al.

CVPR 2025arXiv:2412.18355
2
citations
#88

FedVAD: Enhancing Federated Video Anomaly Detection with GPT-Driven Semantic Distillation

Fan Qi, Ruijie Pan, Huaiwen Zhang et al.

ECCV 2024
federated learningvideo anomaly detectionsemantic distillationlarge language models+4
2
citations
#89

Efficient Adaptive Federated Optimization

Su Hyeong Lee, Sidharth Sharma, Manzil Zaheer et al.

NeurIPS 2025arXiv:2410.18117
federated learningadaptive optimizationcommunication efficiencymemory-efficient optimization+2
2
citations
#90

FedSVD: Adaptive Orthogonalization for Private Federated Learning with LoRA

Seanie Lee, Sangwoo Park, Dong Bok Lee et al.

NeurIPS 2025
2
citations
#91

Exact and Linear Convergence for Federated Learning under Arbitrary Client Participation is Attainable

Bicheng Ying, Zhe Li, Haibo Yang

NeurIPS 2025arXiv:2503.20117
federated learningclient participationdata heterogeneitystochastic matrix modeling+4
2
citations
#92

Generalization in Federated Learning: A Conditional Mutual Information Framework

Ziqiao Wang, Cheng Long, Yongyi Mao

ICML 2025arXiv:2503.04091
2
citations
#93

Federated In-Context Learning: Iterative Refinement for Improved Answer Quality

Ruhan Wang, Zhiyong Wang, Chengkai Huang et al.

ICML 2025arXiv:2506.07440
2
citations
#94

Does One-shot Give the Best Shot? Mitigating Model Inconsistency in One-shot Federated Learning

Hui Zeng, Wenke Huang, Tongqing Zhou et al.

ICML 2025
1
citations
#95

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Yangxu Liao, Wenke Huang, Guancheng Wan et al.

ICML 2025
1
citations
#96

Resource-Constrained Federated Continual Learning: What Does Matter?

Yichen Li, Yuying Wang, Jiahua Dong et al.

NeurIPS 2025
1
citations
#97

Ferret: An Efficient Online Continual Learning Framework under Varying Memory Constraints

Yuhao Zhou, Yuxin Tian, Jindi Lv et al.

CVPR 2025arXiv:2503.12053
1
citations
#98

FCOM: A Federated Collaborative Online Monitoring Framework via Representation Learning

Tanapol Kosolwattana, Huazheng Wang, Raed Al Kontar et al.

AAAI 2025arXiv:2405.20504
1
citations
#99

Learn How to Query from Unlabeled Data Streams in Federated Learning

Yuchang Sun, Xinran Li, Tao Lin et al.

AAAI 2025arXiv:2412.08138
1
citations
#100

Mitigating the Privacy–Utility Trade-off in Decentralized Federated Learning via f-Differential Privacy

Xiang Li, Chendi Wang, Buxin Su et al.

NeurIPS 2025
f-differential privacydecentralized federated learningprivacy-utility trade-offlocal differential privacy+4
1
citations