2024 Poster "variational inference" Papers

24 papers found

$\mathtt{VITS}$ : Variational Inference Thompson Sampling for contextual bandits

Pierre Clavier, Tom Huix, Alain Oliviero Durmus

ICML 2024poster

Accelerating Convergence in Bayesian Few-Shot Classification

Tianjun Ke, Haoqun Cao, Feng Zhou

ICML 2024poster

Adaptive Robust Learning using Latent Bernoulli Variables

Aleksandr Karakulev, Dave Zachariah, Prashant Singh

ICML 2024poster

A Differentiable Partially Observable Generalized Linear Model with Forward-Backward Message Passing

Chengrui Li, Weihan Li, Yule Wang et al.

ICML 2024poster

Amortized Variational Deep Kernel Learning

Alan Matias, César Lincoln Mattos, Joao Paulo Gomes et al.

ICML 2024poster

Bayesian Exploration Networks

Mattie Fellows, Brandon Kaplowitz, Christian Schroeder de Witt et al.

ICML 2024poster

Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling

Denis Blessing, Xiaogang Jia, Johannes Esslinger et al.

ICML 2024poster

Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon Divergence Between Initial and Target Distribution

Johannes Zenn, Robert Bamler

ICML 2024poster

Discovering Mixtures of Structural Causal Models from Time Series Data

Sumanth Varambally, Yian Ma, Rose Yu

ICML 2024poster

Improving Adversarial Energy-Based Model via Diffusion Process

Cong Geng, Tian Han, Peng-Tao Jiang et al.

ICML 2024poster

Kernel Semi-Implicit Variational Inference

Ziheng Cheng, Longlin Yu, Tianyu Xie et al.

ICML 2024poster

Online Variational Sequential Monte Carlo

Alessandro Mastrototaro, Jimmy Olsson

ICML 2024poster

On the Convergence of Projected Bures-Wasserstein Gradient Descent under Euclidean Strong Convexity

Junyi FAN, Yuxuan Han, Zijian Liu et al.

ICML 2024poster

PGODE: Towards High-quality System Dynamics Modeling

Xiao Luo, Yiyang Gu, Huiyu Jiang et al.

ICML 2024poster

Reparameterized Importance Sampling for Robust Variational Bayesian Neural Networks

Yunfei Long, Zilin Tian, Liguo Zhang et al.

ICML 2024poster

Sample as you Infer: Predictive Coding with Langevin Dynamics

Umais Zahid, Qinghai Guo, Zafeirios Fountas

ICML 2024poster

Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Yingyi Chen, Qinghua Tao, Francesco Tonin et al.

ICML 2024poster

Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference

JIAN XU, Delu Zeng, John Paisley

ICML 2024poster

Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians

Tom Huix, Anna Korba, Alain Oliviero Durmus et al.

ICML 2024poster

Understanding Stochastic Natural Gradient Variational Inference

Kaiwen Wu, Jacob Gardner

ICML 2024poster

Variational Inference with Coverage Guarantees in Simulation-Based Inference

Yash Patel, Declan McNamara, Jackson Loper et al.

ICML 2024poster

Variational Linearized Laplace Approximation for Bayesian Deep Learning

Luis A. Ortega, Simon Rodriguez Santana, Daniel Hernández-Lobato

ICML 2024poster

Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts

Hyunsu Kim, Ye Gon Kim, Hongseok Yang et al.

ICML 2024poster

Variational Schrödinger Diffusion Models

Wei Deng, Weijian Luo, Yixin Tan et al.

ICML 2024poster