2024 "uncertainty quantification" Papers

46 papers found

A Bayesian Approach to Online Planning

Nir Greshler, David Ben Eli, Carmel Rabinovitz et al.

ICML 2024poster

Accelerating Convergence in Bayesian Few-Shot Classification

Tianjun Ke, Haoqun Cao, Feng Zhou

ICML 2024poster

Active Statistical Inference

Tijana Zrnic, Emmanuel J Candes

ICML 2024poster

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann et al.

ECCV 2024posterarXiv:2403.07263
18
citations

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen et al.

ICML 2024poster

A Unified View of FANOVA: A Comprehensive Bayesian Framework for Component Selection and Estimation

Yosra MARNISSI, Maxime Leiber

ICML 2024poster

Bayesian Knowledge Distillation: A Bayesian Perspective of Distillation with Uncertainty Quantification

Luyang Fang, Yongkai Chen, Wenxuan Zhong et al.

ICML 2024poster

Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning

Idan Achituve, Idit Diamant, Arnon Netzer et al.

ICML 2024poster

BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

Shikai Fang, Qingsong Wen, Yingtao Luo et al.

ICML 2024oral

Beyond the Norms: Detecting Prediction Errors in Regression Models

Andres Altieri, Marco Romanelli, Georg Pichler et al.

ICML 2024spotlight

Certifiably Byzantine-Robust Federated Conformal Prediction

Mintong Kang, Zhen Lin, Jimeng Sun et al.

ICML 2024poster

Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference

Luca Masserano, Alexander Shen, Michele Doro et al.

ICML 2024poster

Conformal prediction for multi-dimensional time series by ellipsoidal sets

Chen Xu, Hanyang Jiang, Yao Xie

ICML 2024spotlight

Conformal Prediction Sets Improve Human Decision Making

Jesse Cresswell, yi sui, Bhargava Kumar et al.

ICML 2024poster

Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)

Drew Prinster, Samuel Stanton, Anqi Liu et al.

ICML 2024poster

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou et al.

ICML 2024poster

Data Poisoning Attacks against Conformal Prediction

Yangyi Li, Aobo Chen, Wei Qian et al.

ICML 2024poster

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Bairu Hou, Yujian Liu, Kaizhi Qian et al.

ICML 2024poster

Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression

Xuanlong Yu, Gianni Franchi, Jindong Gu et al.

AAAI 2024paperarXiv:2308.09065
7
citations

E2E-AT: A Unified Framework for Tackling Uncertainty in Task-Aware End-to-End Learning

8445 Wangkun Xu, Jianhong Wang, Fei Teng

AAAI 2024paperarXiv:2312.10587
5
citations

Improving Neural Additive Models with Bayesian Principles

Kouroche Bouchiat, Alexander Immer, Hugo Yèche et al.

ICML 2024poster

Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing

Gabriel Arpino, Xiaoqi Liu, Ramji Venkataramanan

ICML 2024posterarXiv:2404.07864

Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?

Mira Juergens, Nis Meinert, Viktor Bengs et al.

ICML 2024poster

Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective

Fabian Falck, Ziyu Wang, Christopher Holmes

ICML 2024poster

Language Models with Conformal Factuality Guarantees

Christopher Mohri, Tatsunori Hashimoto

ICML 2024poster

Multi-Source Conformal Inference Under Distribution Shift

Yi Liu, Alexander Levis, Sharon-Lise Normand et al.

ICML 2024poster

Not all distributional shifts are equal: Fine-grained robust conformal inference

Jiahao Ai, Zhimei Ren

ICML 2024poster

One Step Closer to Unbiased Aleatoric Uncertainty Estimation

Wang Zhang, Ziwen Martin Ma, Subhro Das et al.

AAAI 2024paperarXiv:2312.10469
11
citations

Online Algorithms with Uncertainty-Quantified Predictions

Bo Sun, Jerry Huang, Nicolas Christianson et al.

ICML 2024poster

On the Independence Assumption in Neurosymbolic Learning

Emile van Krieken, Pasquale Minervini, Edoardo Ponti et al.

ICML 2024poster

OVD-Explorer: Optimism Should Not Be the Sole Pursuit of Exploration in Noisy Environments

Jinyi Liu, Zhi Wang, Yan Zheng et al.

AAAI 2024paperarXiv:2312.12145
13
citations

Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho, Minju Jo, Haksoo Lim et al.

ICML 2024poster

Partially Stochastic Infinitely Deep Bayesian Neural Networks

Sergio Calvo Ordoñez, Matthieu Meunier, Francesco Piatti et al.

ICML 2024poster

Position: Amazing Things Come From Having Many Good Models

Cynthia Rudin, Chudi Zhong, Lesia Semenova et al.

ICML 2024spotlight

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla et al.

ICML 2024poster

Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise

Thomas Pouplin, Alan Jeffares, Nabeel Seedat et al.

ICML 2024poster

Second-Order Uncertainty Quantification: A Distance-Based Approach

Yusuf Sale, Viktor Bengs, Michele Caprio et al.

ICML 2024spotlight

T-Cal: An Optimal Test for the Calibration of Predictive Models

Donghwan Lee, Xinmeng Huang, Hamed Hassani et al.

ICML 2024poster

The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks

Ziquan Liu, Yufei Cui, Yan Yan et al.

ICML 2024poster

TIC-TAC: A Framework For Improved Covariance Estimation In Deep Heteroscedastic Regression

Megh Shukla, Mathieu Salzmann, Alexandre Alahi

ICML 2024poster

Towards Modeling Uncertainties of Self-explaining Neural Networks via Conformal Prediction

Wei Qian, Chenxu Zhao, Yangyi Li et al.

AAAI 2024paperarXiv:2401.01549
10
citations

Uncertainty Quantification in Heterogeneous Treatment Effect Estimation with Gaussian-Process-Based Partially Linear Model

Shunsuke Horii, Yoichi Chikahara

AAAI 2024paperarXiv:2312.10435
6
citations

Uncertainty Regularized Evidential Regression

Kai Ye, Tiejin Chen, Hua Wei et al.

AAAI 2024paperarXiv:2401.01484
11
citations

Using AI Uncertainty Quantification to Improve Human Decision-Making

Laura Marusich, Jonathan Bakdash, Yan Zhou et al.

ICML 2024oral

Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar, Danielle Robinson, Shima Alizadeh et al.

ICML 2024poster

Winner-takes-all learners are geometry-aware conditional density estimators

Victor Letzelter, David Perera, Cédric Rommel et al.

ICML 2024poster