2025 Poster "uncertainty quantification" Papers

21 papers found

Bridging the Gap between Variational Inference and Stochastic Gradient MCMC in Function Space

Mengjing Wu, Junyu Xuan, Jie Lu

ICLR 2025poster

CBMA: Improving Conformal Prediction through Bayesian Model Averaging

Pankaj Bhagwat, Linglong Kong, Bei Jiang

ICLR 2025posterarXiv:2511.16924
2
citations

Cocoon: Robust Multi-Modal Perception with Uncertainty-Aware Sensor Fusion

Minkyoung Cho, Yulong Cao, Jiachen Sun et al.

ICLR 2025posterarXiv:2410.12592
5
citations

Conformal Linguistic Calibration: Trading-off between Factuality and Specificity

Zhengping Jiang, Anqi Liu, Ben Van Durme

NeurIPS 2025posterarXiv:2502.19110
7
citations

Contextual Thompson Sampling via Generation of Missing Data

Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.

NeurIPS 2025posterarXiv:2502.07064
2
citations

Distribution-Free Data Uncertainty for Neural Network Regression

Domokos M. Kelen, Ádám Jung, Péter Kersch et al.

ICLR 2025poster
3
citations

Fuz-RL: A Fuzzy-Guided Robust Framework for Safe Reinforcement Learning under Uncertainty

Xu Wan, Chao Yang, Cheng Yang et al.

NeurIPS 2025poster

Gaussian Approximation and Concentration of Constant Learning-Rate Stochastic Gradient Descent

Ziyang Wei, Jiaqi Li, Zhipeng Lou et al.

NeurIPS 2025poster

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NeurIPS 2025posterarXiv:2510.16675
1
citations

Knowledge Distillation of Uncertainty using Deep Latent Factor Model

Sehyun Park, Jongjin Lee, Yunseop Shin et al.

NeurIPS 2025posterarXiv:2510.19290

Neurosymbolic Diffusion Models

Emile van Krieken, Pasquale Minervini, Edoardo Maria Ponti et al.

NeurIPS 2025posterarXiv:2505.13138
3
citations

Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation

Ting Wei, Biao Mei, Junliang Lyu et al.

NeurIPS 2025posterarXiv:2505.14161
1
citations

Probabilistic Reasoning with LLMs for Privacy Risk Estimation

Jonathan Zheng, Alan Ritter, Sauvik Das et al.

NeurIPS 2025poster

ProDAG: Projected Variational Inference for Directed Acyclic Graphs

Ryan Thompson, Edwin Bonilla, Robert Kohn

NeurIPS 2025posterarXiv:2405.15167

Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning

Yan Scholten, Stephan Günnemann

ICLR 2025posterarXiv:2410.09878
2
citations

Statistical Inference for Gradient Boosting Regression

Haimo Fang, Kevin Tan, Giles Hooker

NeurIPS 2025posterarXiv:2509.23127
1
citations

Towards Understanding and Quantifying Uncertainty for Text-to-Image Generation

Gianni Franchi, Nacim Belkhir, Dat NGUYEN et al.

CVPR 2025posterarXiv:2412.03178
3
citations

Uncertainty Estimation by Flexible Evidential Deep Learning

Taeseong Yoon, Heeyoung Kim

NeurIPS 2025posterarXiv:2510.18322

Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations

Richard Bergna, Sergio Calvo Ordoñez, Felix Opolka et al.

ICLR 2025posterarXiv:2408.16115
7
citations

Uncertainty Quantification with the Empirical Neural Tangent Kernel

Joseph Wilson, Chris van der Heide, Liam Hodgkinson et al.

NeurIPS 2025posterarXiv:2502.02870
5
citations

Valid Conformal Prediction for Dynamic GNNs

Ed Davis, Ian Gallagher, Daniel Lawson et al.

ICLR 2025posterarXiv:2405.19230
7
citations