Poster "uncertainty quantification" Papers

54 papers found • Page 1 of 2

Bridging the Gap between Variational Inference and Stochastic Gradient MCMC in Function Space

Mengjing Wu, Junyu Xuan, Jie Lu

ICLR 2025poster

CBMA: Improving Conformal Prediction through Bayesian Model Averaging

Pankaj Bhagwat, Linglong Kong, Bei Jiang

ICLR 2025posterarXiv:2511.16924
2
citations

Cocoon: Robust Multi-Modal Perception with Uncertainty-Aware Sensor Fusion

Minkyoung Cho, Yulong Cao, Jiachen Sun et al.

ICLR 2025posterarXiv:2410.12592
5
citations

Conformal Linguistic Calibration: Trading-off between Factuality and Specificity

Zhengping Jiang, Anqi Liu, Ben Van Durme

NeurIPS 2025posterarXiv:2502.19110
7
citations

Contextual Thompson Sampling via Generation of Missing Data

Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.

NeurIPS 2025posterarXiv:2502.07064
2
citations

Distribution-Free Data Uncertainty for Neural Network Regression

Domokos M. Kelen, Ádám Jung, Péter Kersch et al.

ICLR 2025poster
3
citations

Fuz-RL: A Fuzzy-Guided Robust Framework for Safe Reinforcement Learning under Uncertainty

Xu Wan, Chao Yang, Cheng Yang et al.

NeurIPS 2025poster

Gaussian Approximation and Concentration of Constant Learning-Rate Stochastic Gradient Descent

Ziyang Wei, Jiaqi Li, Zhipeng Lou et al.

NeurIPS 2025poster

Infinite Neural Operators: Gaussian processes on functions

Daniel Augusto de Souza, Yuchen Zhu, Jake Cunningham et al.

NeurIPS 2025posterarXiv:2510.16675
1
citations

Knowledge Distillation of Uncertainty using Deep Latent Factor Model

Sehyun Park, Jongjin Lee, Yunseop Shin et al.

NeurIPS 2025posterarXiv:2510.19290

Neurosymbolic Diffusion Models

Emile van Krieken, Pasquale Minervini, Edoardo Maria Ponti et al.

NeurIPS 2025posterarXiv:2505.13138
3
citations

Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation

Ting Wei, Biao Mei, Junliang Lyu et al.

NeurIPS 2025posterarXiv:2505.14161
1
citations

Probabilistic Reasoning with LLMs for Privacy Risk Estimation

Jonathan Zheng, Alan Ritter, Sauvik Das et al.

NeurIPS 2025poster

ProDAG: Projected Variational Inference for Directed Acyclic Graphs

Ryan Thompson, Edwin Bonilla, Robert Kohn

NeurIPS 2025posterarXiv:2405.15167

Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning

Yan Scholten, Stephan Günnemann

ICLR 2025posterarXiv:2410.09878
2
citations

Statistical Inference for Gradient Boosting Regression

Haimo Fang, Kevin Tan, Giles Hooker

NeurIPS 2025posterarXiv:2509.23127
1
citations

Towards Understanding and Quantifying Uncertainty for Text-to-Image Generation

Gianni Franchi, Nacim Belkhir, Dat NGUYEN et al.

CVPR 2025posterarXiv:2412.03178
3
citations

Uncertainty Estimation by Flexible Evidential Deep Learning

Taeseong Yoon, Heeyoung Kim

NeurIPS 2025posterarXiv:2510.18322

Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations

Richard Bergna, Sergio Calvo Ordoñez, Felix Opolka et al.

ICLR 2025posterarXiv:2408.16115
7
citations

Uncertainty Quantification with the Empirical Neural Tangent Kernel

Joseph Wilson, Chris van der Heide, Liam Hodgkinson et al.

NeurIPS 2025posterarXiv:2502.02870
5
citations

Valid Conformal Prediction for Dynamic GNNs

Ed Davis, Ian Gallagher, Daniel Lawson et al.

ICLR 2025posterarXiv:2405.19230
7
citations

A Bayesian Approach to Online Planning

Nir Greshler, David Ben Eli, Carmel Rabinovitz et al.

ICML 2024poster

Accelerating Convergence in Bayesian Few-Shot Classification

Tianjun Ke, Haoqun Cao, Feng Zhou

ICML 2024poster

Active Statistical Inference

Tijana Zrnic, Emmanuel J Candes

ICML 2024poster

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann et al.

ECCV 2024posterarXiv:2403.07263
18
citations

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen et al.

ICML 2024poster

A Unified View of FANOVA: A Comprehensive Bayesian Framework for Component Selection and Estimation

Yosra MARNISSI, Maxime Leiber

ICML 2024poster

Bayesian Knowledge Distillation: A Bayesian Perspective of Distillation with Uncertainty Quantification

Luyang Fang, Yongkai Chen, Wenxuan Zhong et al.

ICML 2024poster

Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning

Idan Achituve, Idit Diamant, Arnon Netzer et al.

ICML 2024poster

Certifiably Byzantine-Robust Federated Conformal Prediction

Mintong Kang, Zhen Lin, Jimeng Sun et al.

ICML 2024poster

Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference

Luca Masserano, Alexander Shen, Michele Doro et al.

ICML 2024poster

Conformal Prediction Sets Improve Human Decision Making

Jesse Cresswell, yi sui, Bhargava Kumar et al.

ICML 2024poster

Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)

Drew Prinster, Samuel Stanton, Anqi Liu et al.

ICML 2024poster

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou et al.

ICML 2024poster

Data Poisoning Attacks against Conformal Prediction

Yangyi Li, Aobo Chen, Wei Qian et al.

ICML 2024poster

Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

Bairu Hou, Yujian Liu, Kaizhi Qian et al.

ICML 2024poster

Improving Neural Additive Models with Bayesian Principles

Kouroche Bouchiat, Alexander Immer, Hugo Yèche et al.

ICML 2024poster

Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing

Gabriel Arpino, Xiaoqi Liu, Ramji Venkataramanan

ICML 2024posterarXiv:2404.07864

Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?

Mira Juergens, Nis Meinert, Viktor Bengs et al.

ICML 2024poster

Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective

Fabian Falck, Ziyu Wang, Christopher Holmes

ICML 2024poster

Language Models with Conformal Factuality Guarantees

Christopher Mohri, Tatsunori Hashimoto

ICML 2024poster

Multi-Source Conformal Inference Under Distribution Shift

Yi Liu, Alexander Levis, Sharon-Lise Normand et al.

ICML 2024poster

Not all distributional shifts are equal: Fine-grained robust conformal inference

Jiahao Ai, Zhimei Ren

ICML 2024poster

Online Algorithms with Uncertainty-Quantified Predictions

Bo Sun, Jerry Huang, Nicolas Christianson et al.

ICML 2024poster

On the Independence Assumption in Neurosymbolic Learning

Emile van Krieken, Pasquale Minervini, Edoardo Ponti et al.

ICML 2024poster

Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho, Minju Jo, Haksoo Lim et al.

ICML 2024poster

Partially Stochastic Infinitely Deep Bayesian Neural Networks

Sergio Calvo Ordoñez, Matthieu Meunier, Francesco Piatti et al.

ICML 2024poster

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla et al.

ICML 2024poster

Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise

Thomas Pouplin, Alan Jeffares, Nabeel Seedat et al.

ICML 2024poster

T-Cal: An Optimal Test for the Calibration of Predictive Models

Donghwan Lee, Xinmeng Huang, Hamed Hassani et al.

ICML 2024poster
← PreviousNext →