2025 "uncertainty estimation" Papers
18 papers found
AcuRank: Uncertainty-Aware Adaptive Computation for Listwise Reranking
Soyoung Yoon, Gyuwan Kim, Gyu-Hwung Cho et al.
Causal Discovery via Bayesian Optimization
Bao Duong, Sunil Gupta, Thin Nguyen
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang, Fabio Cuzzolin, Keivan Shariatmadar et al.
Do LLMs estimate uncertainty well in instruction-following?
Juyeon Heo, Miao Xiong, Christina Heinze-Deml et al.
DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning for Semi-supervised Medical Image Segmentation
Maregu Assefa, Muzammal Naseer, IYYAKUTTI IYAPPAN GANAPATHI et al.
Enhancing Deep Batch Active Learning for Regression with Imperfect Data Guided Selection
Yinjie Min, Furong Xu, Xinyao Li et al.
Multi-domain Distribution Learning for De Novo Drug Design
Arne Schneuing, Ilia Igashov, Adrian Dobbelstein et al.
Neural Context Flows for Meta-Learning of Dynamical Systems
Roussel Desmond Nzoyem, David Barton, Tom Deakin
Prior2Former - Evidential Modeling of Mask Transformers for Assumption-Free Open-World Panoptic Segmentation
Sebastian Schmidt, Julius Koerner, Dominik Fuchsgruber et al.
Quantifying Uncertainty in the Presence of Distribution Shifts
Yuli Slavutsky, David Blei
Robust and Computation-Aware Gaussian Processes
SEGA: Shaping Semantic Geometry for Robust Hashing under Noisy Supervision
Yiyang Gu, Bohan Wu, Qinghua Ran et al.
Towards Understanding Why Label Smoothing Degrades Selective Classification and How to Fix It
Guoxuan Xia, Olivier Laurent, Gianni Franchi et al.
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Haizhou Shi, Yibin Wang, Ligong Han et al.
Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data
Xingyu Ren, Pengwei Liu, Pengkai Wang et al.
Uncertainty-Sensitive Privileged Learning
Fan-Ming Luo, Lei Yuan, Yang Yu
Uncertainty Weighted Gradients for Model Calibration
Jinxu Lin, Linwei Tao, Minjing Dong et al.
Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
Guillem Capellera, Antonio Rubio, Luis Ferraz et al.