"thompson sampling" Papers

17 papers found

Contextual Thompson Sampling via Generation of Missing Data

Kelly W Zhang, Tianhui Cai, Hongseok Namkoong et al.

NeurIPS 2025posterarXiv:2502.07064
2
citations

Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling

Jasmine Bayrooti, Carl Ek, Amanda Prorok

ICLR 2025posterarXiv:2410.04988
3
citations

Feel-Good Thompson Sampling for Contextual Bandits: a Markov Chain Monte Carlo Showdown

Emile Anand, Sarah Liaw

NeurIPS 2025posterarXiv:2507.15290
1
citations

Generator-Mediated Bandits: Thompson Sampling for GenAI-Powered Adaptive Interventions

Marc Brooks, Gabriel Durham, Kihyuk Hong et al.

NeurIPS 2025posterarXiv:2505.16311

Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits

Yuwei Luo, Mohsen Bayati

ICLR 2025posterarXiv:2306.14872
2
citations

No-Regret Thompson Sampling for Finite-Horizon Markov Decision Processes with Gaussian Processes

Jasmine Bayrooti, Sattar Vakili, Amanda Prorok et al.

NeurIPS 2025oralarXiv:2510.20725

Variance-Aware Feel-Good Thompson Sampling for Contextual Bandits

Xuheng Li, Quanquan Gu

NeurIPS 2025posterarXiv:2511.02123

$\mathtt{VITS}$ : Variational Inference Thompson Sampling for contextual bandits

Pierre Clavier, Tom Huix, Alain Oliviero Durmus

ICML 2024poster

A Bayesian Approach to Online Planning

Nir Greshler, David Ben Eli, Carmel Rabinovitz et al.

ICML 2024poster

Adaptive Anytime Multi-Agent Path Finding Using Bandit-Based Large Neighborhood Search

Thomy Phan, Taoan Huang, Bistra Dilkina et al.

AAAI 2024paperarXiv:2312.16767
10
citations

Efficient Exploration for LLMs

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao et al.

ICML 2024poster

Feel-Good Thompson Sampling for Contextual Dueling Bandits

Xuheng Li, Heyang Zhao, Quanquan Gu

ICML 2024poster

Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs

Tianyuan Jin, Hao-Lun Hsu, William Chang et al.

AAAI 2024paperarXiv:2312.15549

Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds

Shion Takeno, Yu Inatsu, Masayuki Karasuyama et al.

ICML 2024poster

ReLU to the Rescue: Improve Your On-Policy Actor-Critic with Positive Advantages

Andrew Jesson, Christopher Lu, Gunshi Gupta et al.

ICML 2024poster

The Choice of Noninformative Priors for Thompson Sampling in Multiparameter Bandit Models

Jongyeong Lee, Chao-Kai Chiang, Masashi Sugiyama

AAAI 2024paperarXiv:2302.14407

Two-sided Competing Matching Recommendation Markets With Quota and Complementary Preferences Constraints

Yuantong Li, Guang Cheng, Xiaowu Dai

ICML 2024poster