2025 "stochastic gradient descent" Papers

19 papers found

Approximating Metric Magnitude of Point Sets

Rayna Andreeva, James Ward, Primoz Skraba et al.

AAAI 2025paperarXiv:2409.04411
3
citations

Controlling the Flow: Stability and Convergence for Stochastic Gradient Descent with Decaying Regularization

Sebastian Kassing, Simon Weissmann, Leif Döring

NEURIPS 2025posterarXiv:2505.11434
1
citations

Convergence of Clipped SGD on Convex $(L_0,L_1)$-Smooth Functions

Ofir Gaash, Kfir Y. Levy, Yair Carmon

NEURIPS 2025posterarXiv:2502.16492
4
citations

Descent with Misaligned Gradients and Applications to Hidden Convexity

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar et al.

ICLR 2025poster

Emergence and scaling laws in SGD learning of shallow neural networks

Yunwei Ren, Eshaan Nichani, Denny Wu et al.

NEURIPS 2025posterarXiv:2504.19983
13
citations

Gaussian Approximation and Concentration of Constant Learning-Rate Stochastic Gradient Descent

Ziyang Wei, Jiaqi Li, Zhipeng Lou et al.

NEURIPS 2025poster

Gradient correlation is a key ingredient to accelerate SGD with momentum

Julien Hermant, Marien Renaud, Jean-François Aujol et al.

ICLR 2025posterarXiv:2410.07870
2
citations

Leveraging Flatness to Improve Information-Theoretic Generalization Bounds for SGD

Ze Peng, Jian Zhang, Yisen Wang et al.

ICLR 2025posterarXiv:2601.01465

Neural Thermodynamics: Entropic Forces in Deep and Universal Representation Learning

Liu Ziyin, Yizhou Xu, Isaac Chuang

NEURIPS 2025posterarXiv:2505.12387
4
citations

Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson–Romberg Extrapolation

Marina Sheshukova, Denis Belomestny, Alain Oliviero Durmus et al.

ICLR 2025posterarXiv:2410.05106
4
citations

Online robust locally differentially private learning for nonparametric regression

Chenfei Gu, Qiangqiang Zhang, Ting Li et al.

NEURIPS 2025poster

Online Statistical Inference in Decision Making with Matrix Context

Qiyu Han, Will Wei Sun, Yichen Zhang

NEURIPS 2025posterarXiv:2212.11385
2
citations

On the Convergence of Stochastic Smoothed Multi-Level Compositional Gradient Descent Ascent

Xinwen Zhang, Hongchang Gao

NEURIPS 2025poster

Optimal Rates in Continual Linear Regression via Increasing Regularization

Ran Levinstein, Amit Attia, Matan Schliserman et al.

NEURIPS 2025posterarXiv:2506.06501
2
citations

Revisiting Large-Scale Non-convex Distributionally Robust Optimization

Qi Zhang, Yi Zhou, Simon Khan et al.

ICLR 2025poster
1
citations

Revisiting Zeroth-Order Optimization: Minimum-Variance Two-Point Estimators and Directionally Aligned Perturbations

Shaocong Ma, Heng Huang

ICLR 2025posterarXiv:2510.19975
12
citations

Stochastic Semi-Gradient Descent for Learning Mean Field Games with Population-Aware Function Approximation

Chenyu Zhang, Xu Chen, Xuan Di

ICLR 2025posterarXiv:2408.08192
7
citations

The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise

Shuze Daniel Liu, Shuhang Chen, Shangtong Zhang

NEURIPS 2025oralarXiv:2401.07844
13
citations

Understanding the Generalization of Stochastic Gradient Adam in Learning Neural Networks

Xuan Tang, Han Zhang, Yuan Cao et al.

NEURIPS 2025posterarXiv:2510.11354