2024 "stochastic gradient descent" Papers

26 papers found

A Doubly Recursive Stochastic Compositional Gradient Descent Method for Federated Multi-Level Compositional Optimization

Hongchang Gao

ICML 2024poster

Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks

Amit Peleg, Matthias Hein

ICML 2024posterarXiv:2407.03848

Catapults in SGD: spikes in the training loss and their impact on generalization through feature learning

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan et al.

ICML 2024posterarXiv:2306.04815

Delving into the Convergence of Generalized Smooth Minimax Optimization

Wenhan Xian, Ziyi Chen, Heng Huang

ICML 2024poster

Demystifying SGD with Doubly Stochastic Gradients

Kyurae Kim, Joohwan Ko, Yian Ma et al.

ICML 2024posterarXiv:2406.00920

Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

Hao Di, Haishan Ye, Xiangyu Chang et al.

ICML 2024poster

Efficient Online Set-valued Classification with Bandit Feedback

Zhou Wang, Xingye Qiao

ICML 2024posterarXiv:2405.04393

Generalization Analysis of Stochastic Weight Averaging with General Sampling

Wang Peng, Li Shen, Zerui Tao et al.

ICML 2024poster

How Private are DP-SGD Implementations?

Lynn Chua, Badih Ghazi, Pritish Kamath et al.

ICML 2024posterarXiv:2403.17673

Implicit Compressibility of Overparametrized Neural Networks Trained with Heavy-Tailed SGD

Yijun Wan, Melih Barsbey, Abdellatif Zaidi et al.

ICML 2024posterarXiv:2306.08125

Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm

Batiste Le Bars, Aurélien Bellet, Marc Tommasi et al.

ICML 2024posterarXiv:2306.02939

LPGD: A General Framework for Backpropagation through Embedded Optimization Layers

Anselm Paulus, Georg Martius, Vit Musil

ICML 2024posterarXiv:2407.05920

MoMo: Momentum Models for Adaptive Learning Rates

Fabian Schaipp, Ruben Ohana, Michael Eickenberg et al.

ICML 2024posterarXiv:2305.07583

On Convergence of Incremental Gradient for Non-convex Smooth Functions

Anastasiia Koloskova, Nikita Doikov, Sebastian Stich et al.

ICML 2024posterarXiv:2305.19259

Online Learning and Information Exponents: The Importance of Batch size & Time/Complexity Tradeoffs

Luca Arnaboldi, Yatin Dandi, FLORENT KRZAKALA et al.

ICML 2024poster

On the Generalization of Stochastic Gradient Descent with Momentum

Ali Ramezani-Kebrya, Kimon Antonakopoulos, Volkan Cevher et al.

ICML 2024posterarXiv:1809.04564

Plug-and-Play image restoration with Stochastic deNOising REgularization

Marien Renaud, Jean Prost, Arthur Leclaire et al.

ICML 2024posterarXiv:2402.01779

Random features models: a way to study the success of naive imputation

Alexis Ayme, Claire Boyer, Aymeric Dieuleveut et al.

ICML 2024posterarXiv:2402.03839

Random Scaling and Momentum for Non-smooth Non-convex Optimization

Qinzi Zhang, Ashok Cutkosky

ICML 2024posterarXiv:2405.09742

Sliding Down the Stairs: How Correlated Latent Variables Accelerate Learning with Neural Networks

Lorenzo Bardone, Sebastian Goldt

ICML 2024posterarXiv:2404.08602

Sparse Variational Student-t Processes

Jian Xu, Delu Zeng

AAAI 2024paperarXiv:2312.05568
4
citations

Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms

Ming Yang, Xiyuan Wei, Tianbao Yang et al.

ICML 2024posterarXiv:2307.03357

The Role of Learning Algorithms in Collective Action

Omri Ben-Dov, Jake Fawkes, Samira Samadi et al.

ICML 2024posterarXiv:2405.06582

Tuning-Free Stochastic Optimization

Ahmed Khaled, Chi Jin

ICML 2024spotlightarXiv:2402.07793

Understanding Forgetting in Continual Learning with Linear Regression

Meng Ding, Kaiyi Ji, Di Wang et al.

ICML 2024posterarXiv:2405.17583

What is the Long-Run Distribution of Stochastic Gradient Descent? A Large Deviations Analysis

Waïss Azizian, Franck Iutzeler, Jérôme Malick et al.

ICML 2024posterarXiv:2406.09241