"stochastic differential equations" Papers

24 papers found

Cross-fluctuation phase transitions reveal sampling dynamics in diffusion models

Sai Niranjan Ramachandran, Manish Krishan Lal, Suvrit Sra

NeurIPS 2025posterarXiv:2511.00124

Denoising Levy Probabilistic Models

Dario Shariatian, Umut Simsekli, Alain Oliviero Durmus

ICLR 2025poster

Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing

Jaihoon Kim, Taehoon Yoon, Jisung Hwang et al.

NeurIPS 2025posterarXiv:2503.19385
20
citations

Statistical Analysis of the Sinkhorn Iterations for Two-Sample Schr\"{o}dinger Bridge Estimation

Ibuki Maeda, Yao, Atsushi Nitanda

NeurIPS 2025poster

System-Embedded Diffusion Bridge Models

Bartlomiej Sobieski, Matthew Tivnan, Yuang Wang et al.

NeurIPS 2025posterarXiv:2506.23726
1
citations

TADA: Improved Diffusion Sampling with Training-free Augmented DynAmics

Tianrong Chen, Huangjie Zheng, David Berthelot et al.

NeurIPS 2025posterarXiv:2506.21757
1
citations

Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations

Richard Bergna, Sergio Calvo Ordoñez, Felix Opolka et al.

ICLR 2025posterarXiv:2408.16115
7
citations

Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models

Ludwig Winkler, Lorenz Richter, Manfred Opper

ICML 2024poster

FESSNC: Fast Exponentially Stable and Safe Neural Controller

Jingdong Zhang, Luan Yang, Qunxi Zhu et al.

ICML 2024poster

Generalization Bounds for Heavy-Tailed SDEs through the Fractional Fokker-Planck Equation

Benjamin Dupuis, Umut Simsekli

ICML 2024poster

Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge

Yue Conghan, Zhengwei Peng, Junlong Ma et al.

ICML 2024poster

Implicit Compressibility of Overparametrized Neural Networks Trained with Heavy-Tailed SGD

Yijun Wan, Melih Barsbey, Abdellatif Zaidi et al.

ICML 2024poster

Multi-Energy Guided Image Translation with Stochastic Differential Equations for Near-Infrared Facial Expression Recognition

13319 Bingjun Luo, Zewen Wang, Jinpeng Wang et al.

AAAI 2024paperarXiv:2312.05908
2
citations

Neural Jump-Diffusion Temporal Point Processes

Shuai Zhang, Chuan Zhou, Yang Liu et al.

ICML 2024oral

Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks

Dongyoung Lim, Sotirios Sabanis

ICML 2024poster

Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes

Yifan Chen, Mark Goldstein, Mengjian Hua et al.

ICML 2024poster

Probabilistic Time Series Modeling with Decomposable Denoising Diffusion Model

Tijin Yan, Hengheng Gong, Yongping He et al.

ICML 2024poster

Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference

JIAN XU, Delu Zeng, John Paisley

ICML 2024poster

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Xiangxin Zhou, Liang Wang, Yichi Zhou

ICML 2024poster

Statistical Spatially Inhomogeneous Diffusion Inference

Yinuo Ren, Yiping Lu, Lexing Ying et al.

AAAI 2024paperarXiv:2312.05793
3
citations

STDiff: Spatio-Temporal Diffusion for Continuous Stochastic Video Prediction

Xi Ye, Guillaume-Alexandre Bilodeau

AAAI 2024paperarXiv:2312.06486
18
citations

TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors

Yichuan Mo, Hui Huang, Mingjie Li et al.

ICML 2024poster

Understanding Diffusion Models by Feynman's Path Integral

Yuji Hirono, Akinori Tanaka, Kenji Fukushima

ICML 2024poster

Unifying Bayesian Flow Networks and Diffusion Models through Stochastic Differential Equations

Kaiwen Xue, Yuhao Zhou, Shen Nie et al.

ICML 2024poster