2024 "probabilistic modeling" Papers

12 papers found

Accelerating the Global Aggregation of Local Explanations

Alon Mor, Yonatan Belinkov, Benny Kimelfeld

AAAI 2024paperarXiv:2312.07991
6
citations

A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs

Lars Veefkind, Gabriele Cesa

ICML 2024posterarXiv:2406.03946

Arrows of Time for Large Language Models

Vassilis Papadopoulos, Jérémie Wenger, Clement Hongler

ICML 2024posterarXiv:2401.17505

Beyond the Norms: Detecting Prediction Errors in Regression Models

Andres Altieri, Marco Romanelli, Georg Pichler et al.

ICML 2024spotlightarXiv:2406.06968

CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded Modelling

JUNCHAO GONG, LEI BAI, Peng Ye et al.

ICML 2024posterarXiv:2402.04290

CLIFF: Continual Latent Diffusion for Open-Vocabulary Object Detection

Wuyang Li, Xinyu Liu, Jiayi Ma et al.

ECCV 2024poster
14
citations

Domain Invariant Learning for Gaussian Processes and Bayesian Exploration

Xilong Zhao, Siyuan Bian, Yaoyun Zhang et al.

AAAI 2024paperarXiv:2312.11318
2
citations

Dual Operating Modes of In-Context Learning

Ziqian Lin, Kangwook Lee

ICML 2024posterarXiv:2402.18819

Probabilistic Modeling of Interpersonal Coordination Processes

Paulo Soares, Adarsh Pyarelal, Meghavarshini Krishnaswamy et al.

ICML 2024oral

RICA^2: Rubric-Informed, Calibrated Assessment of Actions

Abrar Majeedi, Viswanatha Reddy Gajjala, Satya Sai Srinath Namburi GNVV et al.

ECCV 2024poster
12
citations

SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning

Chaoqun Du, Yizeng Han, Gao Huang

ICML 2024posterarXiv:2402.13505

Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding

Guangyi Liu, Yu Wang, Zeyu Feng et al.

ICML 2024posterarXiv:2402.19009