2025 "partial differential equations" Papers

18 papers found

ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning

Nilo Schwencke, Cyril Furtlehner

ICLR 2025posterarXiv:2412.10782
4
citations

Axial Neural Networks for Dimension-Free Foundation Models

Hyunsu Kim, Jonggeon Park, Joan Bruna et al.

NeurIPS 2025spotlightarXiv:2510.13665

Collapsing Taylor Mode Automatic Differentiation

Felix Dangel, Tim Siebert, Marius Zeinhofer et al.

NeurIPS 2025posterarXiv:2505.13644

CViT: Continuous Vision Transformer for Operator Learning

Sifan Wang, Jacob Seidman, Shyam Sankaran et al.

ICLR 2025oralarXiv:2405.13998
26
citations

Gradient-Free Generation for Hard-Constrained Systems

Chaoran Cheng, Boran Han, Danielle Maddix et al.

ICLR 2025posterarXiv:2412.01786
17
citations

Hybrid Boundary Physics-Informed Neural Networks for Solving Navier-Stokes Equations with Complex Boundary

ChuYu Zhou, Tianyu Li, Chenxi Lan et al.

NeurIPS 2025posterarXiv:2507.17535

Metamizer: A Versatile Neural Optimizer for Fast and Accurate Physics Simulations

Nils Wandel, Stefan Schulz, Reinhard Klein

ICLR 2025posterarXiv:2410.19746
4
citations

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025posterarXiv:2409.17267
2
citations

Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout

Bharat Srikishan, Daniel O'Malley, Mohamed Mehana et al.

ICLR 2025posterarXiv:2503.10048

Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints

Utkarsh Utkarsh, Pengfei Cai, Alan Edelman et al.

NeurIPS 2025posterarXiv:2506.04171
14
citations

Physics-Informed Diffusion Models

Jan-Hendrik Bastek, WaiChing Sun, Dennis Kochmann

ICLR 2025posterarXiv:2403.14404
52
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025posterarXiv:2503.07070
1
citations

PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations

Namgyu Kang, Jaemin Oh, Youngjoon Hong et al.

ICLR 2025posterarXiv:2412.05994
7
citations

PINNs with Learnable Quadrature

Sourav Pal, Kamyar Azizzadenesheli, Vikas Singh

NeurIPS 2025poster

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025posterarXiv:2410.02151
4
citations

Solving Partial Differential Equations via Radon Neural Operator

Wenbin Lu, Yihan Chen, Junnan Xu et al.

NeurIPS 2025poster
4
citations

Text2PDE: Latent Diffusion Models for Accessible Physics Simulation

Anthony Zhou, Zijie Li, Michael Schneier et al.

ICLR 2025oralarXiv:2410.01153
18
citations

UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss

Zhichao Wang, Xinhai Chen, Qinglin Wang et al.

NeurIPS 2025posterarXiv:2508.08615
1
citations