2025 Poster "partial differential equations" Papers

18 papers found

ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning

Nilo Schwencke, Cyril Furtlehner

ICLR 2025posterarXiv:2412.10782
4
citations

Boundary constrained Gaussian processes for robust physics-informed machine learning of linear partial differential equations

David Dalton, Alan Lazarus, Hao Gao et al.

ICLR 2025poster

Collapsing Taylor Mode Automatic Differentiation

Felix Dangel, Tim Siebert, Marius Zeinhofer et al.

NeurIPS 2025posterarXiv:2505.13644

Continuous Simplicial Neural Networks

Aref Einizade, Dorina Thanou, Fragkiskos Malliaros et al.

NeurIPS 2025posterarXiv:2503.12919
2
citations

Gradient-Free Generation for Hard-Constrained Systems

Chaoran Cheng, Boran Han, Danielle Maddix et al.

ICLR 2025posterarXiv:2412.01786
17
citations

Hybrid Boundary Physics-Informed Neural Networks for Solving Navier-Stokes Equations with Complex Boundary

ChuYu Zhou, Tianyu Li, Chenxi Lan et al.

NeurIPS 2025posterarXiv:2507.17535

Metamizer: A Versatile Neural Optimizer for Fast and Accurate Physics Simulations

Nils Wandel, Stefan Schulz, Reinhard Klein

ICLR 2025posterarXiv:2410.19746
4
citations

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Theo Bourdais, Houman Owhadi

ICLR 2025posterarXiv:2409.17267
2
citations

Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout

Bharat Srikishan, Daniel O'Malley, Mohamed Mehana et al.

ICLR 2025posterarXiv:2503.10048

Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints

Utkarsh Utkarsh, Pengfei Cai, Alan Edelman et al.

NeurIPS 2025posterarXiv:2506.04171
14
citations

Physics-Informed Diffusion Models

Jan-Hendrik Bastek, WaiChing Sun, Dennis Kochmann

ICLR 2025posterarXiv:2403.14404
52
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025posterarXiv:2503.07070
1
citations

PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations

Namgyu Kang, Jaemin Oh, Youngjoon Hong et al.

ICLR 2025posterarXiv:2412.05994
7
citations

PINNs with Learnable Quadrature

Sourav Pal, Kamyar Azizzadenesheli, Vikas Singh

NeurIPS 2025poster

Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations

Takashi Furuya, Koichi Taniguchi, Satoshi Okuda

ICLR 2025posterarXiv:2410.02151
4
citations

Solving Differential Equations with Constrained Learning

Viggo Moro, Luiz Chamon

ICLR 2025posterarXiv:2410.22796
1
citations

Solving Partial Differential Equations via Radon Neural Operator

Wenbin Lu, Yihan Chen, Junnan Xu et al.

NeurIPS 2025poster
4
citations

UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss

Zhichao Wang, Xinhai Chen, Qinglin Wang et al.

NeurIPS 2025posterarXiv:2508.08615
1
citations