Poster "out-of-distribution generalization" Papers

27 papers found

Benign Overfitting in Out-of-Distribution Generalization of Linear Models

Shange Tang, Jiayun Wu, Jianqing Fan et al.

ICLR 2025posterarXiv:2412.14474
1
citations

BrainOOD: Out-of-distribution Generalizable Brain Network Analysis

Jiaxing Xu, Yongqiang Chen, Xia Dong et al.

ICLR 2025posterarXiv:2502.01688
6
citations

Learning Graph Invariance by Harnessing Spuriosity

Tianjun Yao, Yongqiang Chen, Kai Hu et al.

ICLR 2025poster
5
citations

MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs

Ke Wang, Yiming QIN, Nikolaos Dimitriadis et al.

NeurIPS 2025posterarXiv:2506.07899
3
citations

Out-of-distribution Generalization for Total Variation based Invariant Risk Minimization

Yuanchao Wang, Zhao-Rong Lai, Tianqi Zhong

ICLR 2025posterarXiv:2502.19665
2
citations

Uncertainty-Informed Meta Pseudo Labeling for Surrogate Modeling with Limited Labeled Data

Xingyu Ren, Pengwei Liu, Pengkai Wang et al.

NeurIPS 2025poster

A Fixed-Point Approach for Causal Generative Modeling

Meyer Scetbon, Joel Jennings, Agrin Hilmkil et al.

ICML 2024poster

A Generative Approach for Treatment Effect Estimation under Collider Bias: From an Out-of-Distribution Perspective

Baohong Li, Haoxuan Li, Anpeng Wu et al.

ICML 2024poster

Amend to Alignment: Decoupled Prompt Tuning for Mitigating Spurious Correlation in Vision-Language Models

Jie ZHANG, Xiaosong Ma, Song Guo et al.

ICML 2024poster

Causally Motivated Personalized Federated Invariant Learning with Shortcut-Averse Information-Theoretic Regularization

Xueyang Tang, Song Guo, Jingcai Guo et al.

ICML 2024poster

Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design

Leo Klarner, Tim G. J. Rudner, Garrett Morris et al.

ICML 2024poster

CRoFT: Robust Fine-Tuning with Concurrent Optimization for OOD Generalization and Open-Set OOD Detection

Lin Zhu, Yifeng Yang, Qinying Gu et al.

ICML 2024poster

Discovering Environments with XRM

Mohammad Pezeshki, Diane Bouchacourt, Mark Ibrahim et al.

ICML 2024poster

Empowering Graph Invariance Learning with Deep Spurious Infomax

Tianjun Yao, Yongqiang Chen, Zhenhao Chen et al.

ICML 2024poster

Ensemble Pruning for Out-of-distribution Generalization

Fengchun Qiao, Xi Peng

ICML 2024poster

Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize

Tianren Zhang, Chujie Zhao, Guanyu Chen et al.

ICML 2024poster

Graph Structure Extrapolation for Out-of-Distribution Generalization

Xiner Li, Shurui Gui, Youzhi Luo et al.

ICML 2024poster

Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

Da Wang, Lin Li, Wei Wei et al.

ICML 2024poster

Invariant Risk Minimization Is A Total Variation Model

Zhao-Rong Lai, Weiwen Wang

ICML 2024poster

Learning Divergence Fields for Shift-Robust Graph Representations

Qitian Wu, Fan Nie, Chenxiao Yang et al.

ICML 2024poster

LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views

Yuji Roh, Qingyun Liu, Huan Gui et al.

ICML 2024poster

OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift

Lin Li, Yifei Wang, Chawin Sitawarin et al.

ICML 2024poster

Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift

Benjamin Eyre, Elliot Creager, David Madras et al.

ICML 2024poster

Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data

Nikita Tsoy, Nikola Konstantinov

ICML 2024poster

Training-free Video Temporal Grounding using Large-scale Pre-trained Models

Minghang Zheng, Xinhao Cai, Qingchao Chen et al.

ECCV 2024posterarXiv:2408.16219
20
citations

Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot

Zixuan Wang, Stanley Wei, Daniel Hsu et al.

ICML 2024poster

Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts

Shengzhuang Chen, Jihoon Tack, Yunqiao Yang et al.

ICML 2024poster