Poster "nonconvex optimization" Papers

13 papers found

Nonconvex Stochastic Optimization under Heavy-Tailed Noises: Optimal Convergence without Gradient Clipping

Zijian Liu, Zhengyuan Zhou

ICLR 2025posterarXiv:2412.19529
23
citations

Problem-Parameter-Free Federated Learning

Wenjing Yan, Kai Zhang, Xiaolu Wang et al.

ICLR 2025poster

Stability and Sharper Risk Bounds with Convergence Rate $\tilde{O}(1/n^2)$

Bowei Zhu, Shaojie Li, Mingyang Yi et al.

NeurIPS 2025posterarXiv:2410.09766
1
citations

A Doubly Recursive Stochastic Compositional Gradient Descent Method for Federated Multi-Level Compositional Optimization

Hongchang Gao

ICML 2024poster

A Study of First-Order Methods with a Deterministic Relative-Error Gradient Oracle

Nadav Hallak, Kfir Levy

ICML 2024poster

Convergence and Complexity Guarantee for Inexact First-order Riemannian Optimization Algorithms

Yuchen Li, Laura Balzano, Deanna Needell et al.

ICML 2024poster

Convergence Guarantees for the DeepWalk Embedding on Block Models

Christopher Harker, Aditya Bhaskara

ICML 2024poster

Gradient Compressed Sensing: A Query-Efficient Gradient Estimator for High-Dimensional Zeroth-Order Optimization

Ruizhong Qiu, Hanghang Tong

ICML 2024poster

Quantum Algorithms and Lower Bounds for Finite-Sum Optimization

Yexin Zhang, Chenyi Zhang, Cong Fang et al.

ICML 2024poster

SPABA: A Single-Loop and Probabilistic Stochastic Bilevel Algorithm Achieving Optimal Sample Complexity

Tianshu Chu, Dachuan Xu, Wei Yao et al.

ICML 2024poster

Towards Certified Unlearning for Deep Neural Networks

Binchi Zhang, Yushun Dong, Tianhao Wang et al.

ICML 2024poster

Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape

Juno Kim, Taiji Suzuki

ICML 2024poster

Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

Zhuanghua Liu, Cheng Chen, Luo Luo et al.

ICML 2024poster