2024 "markov decision processes" Papers

10 papers found

AI Alignment with Changing and Influenceable Reward Functions

Micah Carroll, Davis Foote, Anand Siththaranjan et al.

ICML 2024posterarXiv:2405.17713

Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving Near-Optimal Regret With Posterior Sampling

Danil Provodin, Maurits Kaptein, Mykola Pechenizkiy

ICML 2024posterarXiv:2405.19017

Geometric Active Exploration in Markov Decision Processes: the Benefit of Abstraction

Riccardo De Santi, Federico Arangath Joseph, Noah Liniger et al.

ICML 2024posterarXiv:2407.13364

Is Inverse Reinforcement Learning Harder than Standard Reinforcement Learning? A Theoretical Perspective

Lei Zhao, Mengdi Wang, Yu Bai

ICML 2024posterarXiv:2312.00054

Model-Free Robust $\phi$-Divergence Reinforcement Learning Using Both Offline and Online Data

Kishan Panaganti, Adam Wierman, Eric Mazumdar

ICML 2024poster

On The Statistical Complexity of Offline Decision-Making

Thanh Nguyen-Tang, Raman Arora

ICML 2024posterarXiv:2501.06339

Optimizing Local Satisfaction of Long-Run Average Objectives in Markov Decision Processes

David Klaska, Antonin Kucera, Vojtěch Kůr et al.

AAAI 2024paperarXiv:2312.12325
1
citations

SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDP

Subhojyoti Mukherjee, Josiah Hanna, Robert Nowak

ICML 2024posterarXiv:2406.02165

Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping with Function Approximation

Fengdi Che, Chenjun Xiao, Jincheng Mei et al.

ICML 2024oralarXiv:2405.21043

Test-Time Regret Minimization in Meta Reinforcement Learning

Mirco Mutti, Aviv Tamar

ICML 2024posterarXiv:2406.02282