Poster "manifold learning" Papers

11 papers found

Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models

Louis Bethune, David Vigouroux, Yilun Du et al.

NeurIPS 2025posterarXiv:2505.18230
2
citations

Manifold Learning by Mixture Models of VAEs for Inverse Problems

Giovanni S. Alberti, Johannes Hertrich, Matteo Santacesaria et al.

ICLR 2025posterarXiv:2303.15244
11
citations

Multivariate Time Series Anomaly Detection with Idempotent Reconstruction

Xin Sun, Heng Zhou, Chao Li

NeurIPS 2025poster

Toward a Unified Geometry Understanding : Riemannian Diffusion Framework for Graph Generation and Prediction

Yisen Gao, Xingcheng Fu, Qingyun Sun et al.

NeurIPS 2025posterarXiv:2510.04522

Diffusion Models Encode the Intrinsic Dimension of Data Manifolds

Jan Stanczuk, Georgios Batzolis, Teo Deveney et al.

ICML 2024poster

Disentanglement Learning via Topology

Nikita Balabin, Daria Voronkova, Ilya Trofimov et al.

ICML 2024poster

Exploiting Negative Samples: A Catalyst for Cohort Discovery in Healthcare Analytics

Kaiping Zheng, Horng-Ruey Chua, Melanie Herschel et al.

ICML 2024poster

Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes

Jaehyeong Jo, Sung Ju Hwang

ICML 2024poster

Graph Geometry-Preserving Autoencoders

Jungbin Lim, Jihwan Kim, Yonghyeon Lee et al.

ICML 2024poster

Graph Mixup on Approximate Gromov–Wasserstein Geodesics

Zhichen Zeng, Ruizhong Qiu, Zhe Xu et al.

ICML 2024poster

Random matrix theory improved Fréchet mean of symmetric positive definite matrices

Florent Bouchard, Ammar Mian, Malik TIOMOKO et al.

ICML 2024poster