2025 "machine unlearning" Papers

17 papers found

A Closer Look at Machine Unlearning for Large Language Models

Xiaojian Yuan, Tianyu Pang, Chao Du et al.

ICLR 2025posterarXiv:2410.08109
31
citations

A Reliable Cryptographic Framework for Empirical Machine Unlearning Evaluation

Yiwen Tu, Pingbang Hu, Jiaqi Ma

NeurIPS 2025posterarXiv:2404.11577
2
citations

Ascent Fails to Forget

Ioannis Mavrothalassitis, Pol Puigdemont, Noam Levi et al.

NeurIPS 2025posterarXiv:2509.26427

Catastrophic Failure of LLM Unlearning via Quantization

Zhiwei Zhang, Fali Wang, Xiaomin Li et al.

ICLR 2025posterarXiv:2410.16454
43
citations

Composable Interventions for Language Models

Arinbjörn Kolbeinsson, Kyle O'Brien, Tianjin Huang et al.

ICLR 2025posterarXiv:2407.06483
4
citations

Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness

Rongzhe Wei, Peizhi Niu, Hans Hao-Hsun Hsu et al.

NeurIPS 2025posterarXiv:2506.05735
6
citations

Hessian-Free Online Certified Unlearning

Xinbao Qiao, Meng Zhang, Ming Tang et al.

ICLR 2025posterarXiv:2404.01712
5
citations

Hippocampal-like Sequential Editing for Continual Knowledge Updates in Large Language Models

Quntian Fang, Zhen Huang, Zhiliang Tian et al.

NeurIPS 2025poster

Keeping an Eye on LLM Unlearning: The Hidden Risk and Remedy

Jie Ren, Zhenwei Dai, Xianfeng Tang et al.

NeurIPS 2025posterarXiv:2506.00359
6
citations

LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty

Christoforos N. Spartalis, Theodoros Semertzidis, Efstratios Gavves et al.

CVPR 2025posterarXiv:2503.18314
8
citations

Machine Unlearning via Simulated Oracle Matching

Kristian G Georgiev, Roy Rinberg, Sam Park et al.

ICLR 2025poster
3
citations

MUNBa: Machine Unlearning via Nash Bargaining

Jing Wu, Mehrtash Harandi

ICCV 2025posterarXiv:2411.15537
7
citations

MUSE: Machine Unlearning Six-Way Evaluation for Language Models

Weijia Shi, Jaechan Lee, Yangsibo Huang et al.

ICLR 2025posterarXiv:2407.06460
157
citations

On Large Language Model Continual Unlearning

Chongyang Gao, Lixu Wang, Kaize Ding et al.

ICLR 2025posterarXiv:2407.10223
26
citations

RUAGO: Effective and Practical Retain-Free Unlearning via Adversarial Attack and OOD Generator

SangYong Lee, Sangjun Chung, Simon Woo

NeurIPS 2025poster

Towards Effective Evaluations and Comparisons for LLM Unlearning Methods

Qizhou Wang, Bo Han, Puning Yang et al.

ICLR 2025posterarXiv:2406.09179
21
citations

Towards Scalable Exact Machine Unlearning Using Parameter-Efficient Fine-Tuning

Somnath Basu Roy Chowdhury, Krzysztof Choromanski, Arijit Sehanobish et al.

ICLR 2025posterarXiv:2406.16257
22
citations