"inverse problems" Papers

26 papers found

Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data

Asad Aali, Giannis Daras, Brett Levac et al.

ICLR 2025posterarXiv:2403.08728
30
citations

Boundary constrained Gaussian processes for robust physics-informed machine learning of linear partial differential equations

David Dalton, Alan Lazarus, Hao Gao et al.

ICLR 2025poster

Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling

Michal Balcerak, Tamaz Amiranashvili, Antonio Terpin et al.

NeurIPS 2025posterarXiv:2504.10612
8
citations

LATINO-PRO: LAtent consisTency INverse sOlver with PRompt Optimization

Alessio Spagnoletti, Jean Prost, Andres Almansa et al.

ICCV 2025posterarXiv:2503.12615
9
citations

PIED: Physics-Informed Experimental Design for Inverse Problems

Apivich Hemachandra, Gregory Kang Ruey Lau, See-Kiong Ng et al.

ICLR 2025posterarXiv:2503.07070
1
citations

PRDP: Progressively Refined Differentiable Physics

Kanishk Bhatia, Felix Koehler, Nils Thuerey

ICLR 2025posterarXiv:2502.19611
1
citations

Rethinking Diffusion Posterior Sampling: From Conditional Score Estimator to Maximizing a Posterior

Tongda Xu, Xiyan Cai, Xinjie Zhang et al.

ICLR 2025posterarXiv:2501.18913
12
citations

Rethinking Gradient Step Denoiser: Towards Truly Pseudo-Contractive Operator

Shuchang Zhang, Yaoyun Zeng, Kangkang Deng et al.

NeurIPS 2025poster

Self-diffusion for Solving Inverse Problems

Guanxiong Luo, Shoujin Huang

NeurIPS 2025posterarXiv:2510.21417
1
citations

Semialgebraic Neural Networks: From roots to representations

S David Mis, Matti Lassas, Maarten V de Hoop

ICLR 2025posterarXiv:2501.01564

Sensitivity-Constrained Fourier Neural Operators for Forward and Inverse Problems in Parametric Differential Equations

Abdolmehdi Behroozi, Chaopeng Shen, Daniel Kifer

ICLR 2025posterarXiv:2505.08740
5
citations

Solving Inverse Problems with FLAIR

Julius Erbach, Dominik Narnhofer, Andreas Dombos et al.

NeurIPS 2025posterarXiv:2506.02680
7
citations

Split Gibbs Discrete Diffusion Posterior Sampling

Wenda Chu, Zihui Wu, Yifan Chen et al.

NeurIPS 2025posterarXiv:2503.01161
6
citations

System-Embedded Diffusion Bridge Models

Bartlomiej Sobieski, Matthew Tivnan, Yuang Wang et al.

NeurIPS 2025posterarXiv:2506.23726
1
citations

Adapt and Diffuse: Sample-adaptive Reconstruction via Latent Diffusion Models

Zalan Fabian, Berk Tinaz, Mahdi Soltanolkotabi

ICML 2024spotlight

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat et al.

ICML 2024poster

Diffusion Posterior Sampling is Computationally Intractable

Shivam Gupta, Ajil Jalal, Aditya Parulekar et al.

ICML 2024poster

Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance

Xinyu Peng, Ziyang Zheng, Wenrui Dai et al.

ICML 2024poster

Learning Pseudo-Contractive Denoisers for Inverse Problems

Deliang Wei, Peng Chen, Fang Li

ICML 2024poster

Plug-and-Play image restoration with Stochastic deNOising REgularization

Marien Renaud, Jean Prost, Arthur Leclaire et al.

ICML 2024poster

Plug-and-Play Learned Proximal Trajectory for 3D Sparse-View X-Ray Computed Tomography

Romain Vo, Julie Escoda, Caroline Vienne et al.

ECCV 2024poster
3
citations

Prompt-tuning Latent Diffusion Models for Inverse Problems

Hyungjin Chung, Jong Chul YE, Peyman Milanfar et al.

ICML 2024poster

The Emergence of Reproducibility and Consistency in Diffusion Models

Huijie Zhang, Jinfan Zhou, Yifu Lu et al.

ICML 2024poster

The Perception-Robustness Tradeoff in Deterministic Image Restoration

Guy Ohayon, Tomer Michaeli, Michael Elad

ICML 2024spotlight

Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation

Zakhar Shumaylov, Jeremy Budd, Subhadip Mukherjee et al.

ICML 2024poster

Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems

Yasar Utku Alcalar, Mehmet Akcakaya

ECCV 2024posterarXiv:2407.11288
8
citations