2025 "foundation models" Papers

26 papers found

$\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs

Vlad Sobal, Mark Ibrahim, Randall Balestriero et al.

ICLR 2025posterarXiv:2407.18134
12
citations

Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws

Yiding Jiang, Allan Zhou, Zhili Feng et al.

ICLR 2025posterarXiv:2410.11820
35
citations

CONDA: Adaptive Concept Bottleneck for Foundation Models Under Distribution Shifts

Jihye Choi, Jayaram Raghuram, Yixuan Li et al.

ICLR 2025poster

CPathAgent: An Agent-based Foundation Model for Interpretable High-Resolution Pathology Image Analysis Mimicking Pathologists' Diagnostic Logic

YUXUAN SUN, Yixuan Si, Chenglu Zhu et al.

NeurIPS 2025posterarXiv:2505.20510
8
citations

Dynamic Risk Assessments for Offensive Cybersecurity Agents

Boyi Wei, Benedikt Stroebl, Jiacen Xu et al.

NeurIPS 2025posterarXiv:2505.18384
4
citations

EditAR: Unified Conditional Generation with Autoregressive Models

Jiteng Mu, Nuno Vasconcelos, Xiaolong Wang

CVPR 2025posterarXiv:2501.04699
23
citations

Eval3D: Interpretable and Fine-grained Evaluation for 3D Generation

Shivam Duggal, Yushi Hu, Oscar Michel et al.

CVPR 2025posterarXiv:2504.18509
6
citations

FaCT: Faithful Concept Traces for Explaining Neural Network Decisions

Amin Parchami-Araghi, Sukrut Rao, Jonas Fischer et al.

NeurIPS 2025posterarXiv:2510.25512
1
citations

Intelligent Go-Explore: Standing on the Shoulders of Giant Foundation Models

Cong Lu, Shengran Hu, Jeff Clune

ICLR 2025posterarXiv:2405.15143
26
citations

KGGen: Extracting Knowledge Graphs from Plain Text with Language Models

Belinda Mo, Kyssen Yu, Joshua Kazdan et al.

NeurIPS 2025posterarXiv:2502.09956
25
citations

PathVQ: Reforming Computational Pathology Foundation Model for Whole Slide Image Analysis via Vector Quantization

Honglin Li, Zhongyi Shui, Yunlong Zhang et al.

NeurIPS 2025posterarXiv:2503.06482

Point-SAM: Promptable 3D Segmentation Model for Point Clouds

Yuchen Zhou, Jiayuan Gu, Tung Chiang et al.

ICLR 2025posterarXiv:2406.17741
40
citations

PRIMAL: Physically Reactive and Interactive Motor Model for Avatar Learning

Yan Zhang, Yao Feng, Alpár Cseke et al.

ICCV 2025posterarXiv:2503.17544
5
citations

Provable Meta-Learning with Low-Rank Adaptations

Jacob Block, Sundararajan Srinivasan, Liam Collins et al.

NeurIPS 2025posterarXiv:2410.22264

Reflexive Guidance: Improving OoDD in Vision-Language Models via Self-Guided Image-Adaptive Concept Generation

Jihyo Kim, Seulbi Lee, Sangheum Hwang

ICLR 2025posterarXiv:2410.14975
3
citations

SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning

Yichen Wu, Hongming Piao, Long-Kai Huang et al.

ICLR 2025posterarXiv:2501.13198
26
citations

SoMA: Singular Value Decomposed Minor Components Adaptation for Domain Generalizable Representation Learning

Seokju Yun, Seunghye Chae, Dongheon Lee et al.

CVPR 2025highlightarXiv:2412.04077
8
citations

Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation

Qinghe Ma, Jian Zhang, Zekun Li et al.

CVPR 2025posterarXiv:2503.16997
4
citations

Synthetic Series-Symbol Data Generation for Time Series Foundation Models

Wenxuan Wang, Kai Wu, yujian li et al.

NeurIPS 2025posterarXiv:2510.08445

The Computer Vision Foundation

CVPR 2025arXiv:2502.20256

This Time is Different: An Observability Perspective on Time Series Foundation Models

Ben Cohen, Emaad Khwaja, Youssef Doubli et al.

NeurIPS 2025posterarXiv:2505.14766
11
citations

THUNDER: Tile-level Histopathology image UNDERstanding benchmark

Pierre Marza, Leo Fillioux, Sofiène Boutaj et al.

NeurIPS 2025spotlightarXiv:2507.07860
3
citations

Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

Xiaoming Shi, Shiyu Wang, Yuqi Nie et al.

ICLR 2025posterarXiv:2409.16040
178
citations

Towards Physics-informed Spatial Intelligence with Human Priors: An Autonomous Driving Pilot Study

Guanlin (Frank) Wu, Boyan Su, Yang Zhao et al.

NeurIPS 2025spotlightarXiv:2510.21160

TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

Kanghui Ning, Zijie Pan, Yu Liu et al.

NeurIPS 2025posterarXiv:2503.07649
11
citations

UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection

Zhaopeng Gu, Bingke Zhu, Guibo Zhu et al.

CVPR 2025posterarXiv:2412.03342
22
citations