2024 "explainable ai" Papers

20 papers found

Accelerating the Global Aggregation of Local Explanations

Alon Mor, Yonatan Belinkov, Benny Kimelfeld

AAAI 2024paperarXiv:2312.07991
6
citations

Attribution-based Explanations that Provide Recourse Cannot be Robust

Hidde Fokkema, Rianne de Heide, Tim van Erven

ICML 2024poster

Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles

Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer et al.

AAAI 2024paperarXiv:2401.12069
29
citations

CGS-Mask: Making Time Series Predictions Intuitive for All

Feng Lu, Wei Li, Yifei Sun et al.

AAAI 2024paperarXiv:2312.09513
1
citations

Counterfactual Metarules for Local and Global Recourse

Tom Bewley, Salim I. Amoukou, Saumitra Mishra et al.

ICML 2024poster

EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time

Shengyao Lu, Bang Liu, Keith Mills et al.

ICML 2024poster

Enhance Sketch Recognition’s Explainability via Semantic Component-Level Parsing

Guangming Zhu, Siyuan Wang, Tianci Wu et al.

AAAI 2024paperarXiv:2312.07875
2
citations

Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals

Patrick Altmeyer, Mojtaba Farmanbar, Arie Van Deursen et al.

AAAI 2024paperarXiv:2312.10648

Gaussian Process Neural Additive Models

Wei Zhang, Brian Barr, John Paisley

AAAI 2024paperarXiv:2402.12518
11
citations

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Zhuomin Chen, Jiaxing Zhang, Jingchao Ni et al.

ICML 2024poster

Good Teachers Explain: Explanation-Enhanced Knowledge Distillation

Amin Parchami, Moritz Böhle, Sukrut Rao et al.

ECCV 2024posterarXiv:2402.03119
18
citations

Graph Neural Network Explanations are Fragile

Jiate Li, Meng Pang, Yun Dong et al.

ICML 2024poster

Keep the Faith: Faithful Explanations in Convolutional Neural Networks for Case-Based Reasoning

Tom Nuno Wolf, Fabian Bongratz, Anne-Marie Rickmann et al.

AAAI 2024paperarXiv:2312.09783
8
citations

Learning Performance Maximizing Ensembles with Explainability Guarantees

Vincent Pisztora, Jia Li

AAAI 2024paperarXiv:2312.12715

Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution

Eslam Zaher, Maciej Trzaskowski, Quan Nguyen et al.

ICML 2024poster

On Gradient-like Explanation under a Black-box Setting: When Black-box Explanations Become as Good as White-box

Yi Cai, Gerhard Wunder

ICML 2024poster

Position: Do Not Explain Vision Models Without Context

Paulina Tomaszewska, Przemyslaw Biecek

ICML 2024poster

Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models

Hengyi Wang, Shiwei Tan, Hao Wang

ICML 2024poster

Towards More Faithful Natural Language Explanation Using Multi-Level Contrastive Learning in VQA

Chengen Lai, Shengli Song, Shiqi Meng et al.

AAAI 2024paperarXiv:2312.13594
9
citations

Using Stratified Sampling to Improve LIME Image Explanations

Muhammad Rashid, Elvio G. Amparore, Enrico Ferrari et al.

AAAI 2024paperarXiv:2403.17742
7
citations