Poster "explainable ai" Papers

21 papers found

AI2TALE: An Innovative Information Theory-based Approach for Learning to Localize Phishing Attacks

Van Nguyen, Tingmin Wu, Xingliang YUAN et al.

ICLR 2025poster
2
citations

AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models

Ziyin Zhou, Yunpeng Luo, Yuanchen Wu et al.

ICCV 2025posterarXiv:2507.02664
13
citations

Data-centric Prediction Explanation via Kernelized Stein Discrepancy

Mahtab Sarvmaili, Hassan Sajjad, Ga Wu

ICLR 2025posterarXiv:2403.15576
2
citations

Explainably Safe Reinforcement Learning

Sabine Rieder, Stefan Pranger, Debraj Chakraborty et al.

NeurIPS 2025poster

LeapFactual: Reliable Visual Counterfactual Explanation Using Conditional Flow Matching

Zhuo Cao, Xuan Zhao, Lena Krieger et al.

NeurIPS 2025posterarXiv:2510.14623
1
citations

On Logic-based Self-Explainable Graph Neural Networks

Alessio Ragno, Marc Plantevit, Céline Robardet

NeurIPS 2025poster

Regression-adjusted Monte Carlo Estimators for Shapley Values and Probabilistic Values

R. Teal Witter, Yurong Liu, Christopher Musco

NeurIPS 2025posterarXiv:2506.11849
2
citations

Representational Difference Explanations

Neehar Kondapaneni, Oisin Mac Aodha, Pietro Perona

NeurIPS 2025posterarXiv:2505.23917

Seeing Through Deepfakes: A Human-Inspired Framework for Multi-Face Detection

Juan Hu, Shaojing Fan, Terence Sim

ICCV 2025posterarXiv:2507.14807
1
citations

Smoothed Differentiation Efficiently Mitigates Shattered Gradients in Explanations

Adrian Hill, Neal McKee, Johannes Maeß et al.

NeurIPS 2025poster

VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models

Muchao Ye, Weiyang Liu, Pan He

CVPR 2025posterarXiv:2412.01095
8
citations

Attribution-based Explanations that Provide Recourse Cannot be Robust

Hidde Fokkema, Rianne de Heide, Tim van Erven

ICML 2024poster

Counterfactual Metarules for Local and Global Recourse

Tom Bewley, Salim I. Amoukou, Saumitra Mishra et al.

ICML 2024poster

EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time

Shengyao Lu, Bang Liu, Keith Mills et al.

ICML 2024poster

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Zhuomin Chen, Jiaxing Zhang, Jingchao Ni et al.

ICML 2024poster

Good Teachers Explain: Explanation-Enhanced Knowledge Distillation

Amin Parchami, Moritz Böhle, Sukrut Rao et al.

ECCV 2024posterarXiv:2402.03119
18
citations

Graph Neural Network Explanations are Fragile

Jiate Li, Meng Pang, Yun Dong et al.

ICML 2024poster

Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution

Eslam Zaher, Maciej Trzaskowski, Quan Nguyen et al.

ICML 2024poster

On Gradient-like Explanation under a Black-box Setting: When Black-box Explanations Become as Good as White-box

Yi Cai, Gerhard Wunder

ICML 2024poster

Position: Do Not Explain Vision Models Without Context

Paulina Tomaszewska, Przemyslaw Biecek

ICML 2024poster

Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models

Hengyi Wang, Shiwei Tan, Hao Wang

ICML 2024poster