2024 Poster "distribution shifts" Papers

20 papers found

An Empirical Study Into What Matters for Calibrating Vision-Language Models

Weijie Tu, Weijian Deng, Dylan Campbell et al.

ICML 2024posterarXiv:2402.07417

CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts

Yichao Cai, Yuhang Liu, Zhen Zhang et al.

ECCV 2024posterarXiv:2311.16445
11
citations

COALA: A Practical and Vision-Centric Federated Learning Platform

Weiming Zhuang, Jian Xu, Chen Chen et al.

ICML 2024posterarXiv:2407.16560

Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts

Ha Manh Bui, Anqi Liu

ICML 2024posterarXiv:2302.06495

Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization

Haoyang Li, Xin Wang, Zeyang Zhang et al.

ICML 2024poster

Efficient Diffusion-Driven Corruption Editor for Test-Time Adaptation

Yeongtak Oh, Jonghyun Lee, Jooyoung Choi et al.

ECCV 2024posterarXiv:2403.10911
6
citations

Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize

Tianren Zhang, Chujie Zhao, Guanyu Chen et al.

ICML 2024posterarXiv:2406.03345

FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering

Yongxin Guo, Xiaoying Tang, Tao Lin

ICML 2024posterarXiv:2301.12379

Few-shot Adaptation to Distribution Shifts By Mixing Source and Target Embeddings

Yihao Xue, Ali Payani, Yu Yang et al.

ICML 2024posterarXiv:2305.14521

Graph Structure Extrapolation for Out-of-Distribution Generalization

Xiner Li, Shurui Gui, Youzhi Luo et al.

ICML 2024poster

How Do Nonlinear Transformers Learn and Generalize in In-Context Learning?

Hongkang Li, Meng Wang, Songtao Lu et al.

ICML 2024posterarXiv:2402.15607

IW-GAE: Importance weighted group accuracy estimation for improved calibration and model selection in unsupervised domain adaptation

Taejong Joo, Diego Klabjan

ICML 2024posterarXiv:2310.10611

Learning to Intervene on Concept Bottlenecks

David Steinmann, Wolfgang Stammer, Felix Friedrich et al.

ICML 2024posterarXiv:2308.13453

Measuring Stochastic Data Complexity with Boltzmann Influence Functions

Nathan Ng, Roger Grosse, Marzyeh Ghassemi

ICML 2024posterarXiv:2406.02745

Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains

Steven Wilkins-Reeves, Xu Chen, Qi Ma et al.

ICML 2024posterarXiv:2402.14145

Online Adaptive Anomaly Thresholding with Confidence Sequences

Sophia Sun, Abishek Sankararaman, Balakrishnan Narayanaswamy

ICML 2024poster

Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup

Damien Teney, Jindong Wang, Ehsan Abbasnejad

ICML 2024posterarXiv:2305.16817

Statistical Inference Under Constrained Selection Bias

Santiago Cortes-Gomez, Mateo Dulce Rubio, Carlos Miguel Patiño et al.

ICML 2024posterarXiv:2306.03302

Statistical Properties of Robust Satisficing

zhiyi li, Yunbei Xu, Ruohan Zhan

ICML 2024posterarXiv:2405.20451

TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts

Youssef Mansour, Xuyang Zhong, Serdar Caglar et al.

ECCV 2024poster
8
citations